Quantum computation and cryptography: An overview

被引:1
作者
Calixto M. [1 ]
机构
[1] Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Cartagena 30203
关键词
Algorithms; Cryptography; Entanglement; Logic gates; Parallelism; Quantum computing; Teleportation;
D O I
10.1007/s11047-008-9094-8
中图分类号
学科分类号
摘要
The new Quantum Information Theory augurs powerful machines that obey the "entangled" logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. In this article, we highlight and explain these fundamental ingredients that make Quantum Computing potentially powerful and Quantum Communications reliable. © 2008 Springer Science+Business Media B.V.
引用
收藏
页码:663 / 679
页数:16
相关论文
共 22 条
[1]  
Aspect A., Grangier P., Roger G., Experimental tests of realistic local theories via Bell's theorem, Phys Rev Lett, 47, pp. 460-463, (1981)
[2]  
Bell J.S., On the problem of hidden variables in quantum mechanics, Rev Mod Phys, 38, pp. 447-452, (1966)
[3]  
Bennett C.H., Brassard G., Quantum cryptography: Public-key distribution and coin tossing, Proceedings IEEE International Conference on Computers, Systems and Signal Processing, pp. 175-179, (1984)
[4]  
Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K., Teleporting an unknown quantum state via dual classical and EPR channels, Phys Rev Lett, 70, pp. 1895-1899, (1993)
[5]  
Bouwmeester D., Pan J.-W., Mattle K., Eibl M., Weinfurter H., Zeilinger A., Experimental quantum teleportation, Nature, 390, 6660, pp. 575-579, (1997)
[6]  
Calixto M., On the hidden subgroup problem and efficient quantum algorithms, Fundamental Physics Workshop in Honor to A. Galindo, Aula Documental de Investigación, (2004)
[7]  
Cirac J.I., Zoller P., Quantum computation with cold trapped ions, Phys Rev Lett, 74, pp. 4091-4094, (1995)
[8]  
Deutsch D., Quantum theory, the Church-Turing hypothesis and universal quantum computers, Proc Roy Soc Lond A, 400, pp. 97-116, (1985)
[9]  
Doyle A.C., Hodgson J.A., Sherlock Holmes, (1994)
[10]  
Einstein A., Podolsky B., Rosen N., Can quantum-mechanical description of physical reality be considered complete?, Phys Rev, 47, pp. 777-780, (1935)