Differential polynomials with dilations in the argument and normal families

被引:0
|
作者
Jürgen Grahl
机构
[1] University of Würzburg,Department of Mathematics
来源
Monatshefte für Mathematik | 2011年 / 162卷
关键词
Differential polynomials; Normal families; Nevanlinna theory; Zalcman’s Lemma; 30D35; 30D45;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} of analytic functions in the unit disk \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{D}}$$\end{document} which satisfy a condition of the form\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f^n(z)+P[f](xz)+b\ne 0 $$\end{document}for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in\mathcal{F}}$$\end{document} and all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${z\in\mathbb{D}}$$\end{document} (where n ≥ 3, 0 < |x| ≤ 1, b ≠ 0 and P is an arbitrary differential polynomial of degree at most n − 2 with constant coefficients and without terms of degree 0) is normal at the origin. Under certain additional assumptions on P the same holds also for b = 0. The proof relies on a modification of Nevanlinna theory in combination with the Zalcman–Pang rescaling method. Furthermore we prove some corresponding results of Picard type for functions meromorphic in the plane.
引用
收藏
页码:429 / 452
页数:23
相关论文
共 50 条