Differential polynomials with dilations in the argument and normal families
被引:0
|
作者:
Jürgen Grahl
论文数: 0引用数: 0
h-index: 0
机构:University of Würzburg,Department of Mathematics
Jürgen Grahl
机构:
[1] University of Würzburg,Department of Mathematics
来源:
Monatshefte für Mathematik
|
2011年
/
162卷
关键词:
Differential polynomials;
Normal families;
Nevanlinna theory;
Zalcman’s Lemma;
30D35;
30D45;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that a family \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{F}}$$\end{document} of analytic functions in the unit disk \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{D}}$$\end{document} which satisfy a condition of the form\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ f^n(z)+P[f](xz)+b\ne 0 $$\end{document}for all \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${f\in\mathcal{F}}$$\end{document} and all \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${z\in\mathbb{D}}$$\end{document} (where n ≥ 3, 0 < |x| ≤ 1, b ≠ 0 and P is an arbitrary differential polynomial of degree at most n − 2 with constant coefficients and without terms of degree 0) is normal at the origin. Under certain additional assumptions on P the same holds also for b = 0. The proof relies on a modification of Nevanlinna theory in combination with the Zalcman–Pang rescaling method. Furthermore we prove some corresponding results of Picard type for functions meromorphic in the plane.
机构:
Guangdong Univ Foreign Studies, Sch Math & Stat, Guangzhou 510006, Peoples R ChinaGuangdong Univ Foreign Studies, Sch Math & Stat, Guangzhou 510006, Peoples R China
Chen, Min-Feng
Huang, Zhi-Bo
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R ChinaGuangdong Univ Foreign Studies, Sch Math & Stat, Guangzhou 510006, Peoples R China
机构:
Chongqing Univ Arts & Sci, Dept Math & Comp Sci, Chongqing 402168, Peoples R ChinaChongqing Univ Arts & Sci, Dept Math & Comp Sci, Chongqing 402168, Peoples R China