Differential polynomials with dilations in the argument and normal families

被引:0
|
作者
Jürgen Grahl
机构
[1] University of Würzburg,Department of Mathematics
来源
Monatshefte für Mathematik | 2011年 / 162卷
关键词
Differential polynomials; Normal families; Nevanlinna theory; Zalcman’s Lemma; 30D35; 30D45;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} of analytic functions in the unit disk \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{D}}$$\end{document} which satisfy a condition of the form\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f^n(z)+P[f](xz)+b\ne 0 $$\end{document}for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in\mathcal{F}}$$\end{document} and all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${z\in\mathbb{D}}$$\end{document} (where n ≥ 3, 0 < |x| ≤ 1, b ≠ 0 and P is an arbitrary differential polynomial of degree at most n − 2 with constant coefficients and without terms of degree 0) is normal at the origin. Under certain additional assumptions on P the same holds also for b = 0. The proof relies on a modification of Nevanlinna theory in combination with the Zalcman–Pang rescaling method. Furthermore we prove some corresponding results of Picard type for functions meromorphic in the plane.
引用
收藏
页码:429 / 452
页数:23
相关论文
共 50 条
  • [21] Unicity of meromorphic functions and their linear differential polynomials
    Chenguang Wang
    Qi Han
    Journal of Inequalities and Applications, 2014
  • [22] Fix-points of certain differential polynomials
    Subhas S. Bhoosnurmath
    Chhaya M. Hombali
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1998, 108 : 121 - 131
  • [23] Unicity of meromorphic functions and their linear differential polynomials
    Wang, Chenguang
    Han, Qi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [24] ON DEFICIENCIES OF DIFFERENTIAL POLYNOMIALS
    SINGH, AP
    DHAR, RS
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1992, 102 (02): : 129 - 139
  • [25] Two New Criteria for Normal Families
    Eleanor F. Clifford
    Computational Methods and Function Theory, 2005, 5 (1) : 65 - 76
  • [26] A PRECISE INEQUALITY OF DIFFERENTIAL POLYNOMIALS RELATED TO SMALL FUNCTIONS
    Xu, Junfeng
    Yi, Hongxun
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 971 - 976
  • [27] On differential polynomials, fixpoints and critical values of meromorphic functions
    Langley J.K.
    Results in Mathematics, 1999, 35 (3-4) : 284 - 309
  • [28] Pairs of Non-Homogeneous Linear Differential Polynomials
    Buck, Matthew
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2011, 11 (01) : 283 - 300
  • [29] Pairs of Non-Homogeneous Linear Differential Polynomials
    Matthew Buck
    Computational Methods and Function Theory, 2011, 11 : 283 - 300
  • [30] A unified inequality of differential polynomials related to small functions
    Xu, Junfeng
    Ye, Shuichao
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (47): : 664 - 676