Differential polynomials with dilations in the argument and normal families

被引:0
|
作者
Jürgen Grahl
机构
[1] University of Würzburg,Department of Mathematics
来源
Monatshefte für Mathematik | 2011年 / 162卷
关键词
Differential polynomials; Normal families; Nevanlinna theory; Zalcman’s Lemma; 30D35; 30D45;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} of analytic functions in the unit disk \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{D}}$$\end{document} which satisfy a condition of the form\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f^n(z)+P[f](xz)+b\ne 0 $$\end{document}for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in\mathcal{F}}$$\end{document} and all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${z\in\mathbb{D}}$$\end{document} (where n ≥ 3, 0 < |x| ≤ 1, b ≠ 0 and P is an arbitrary differential polynomial of degree at most n − 2 with constant coefficients and without terms of degree 0) is normal at the origin. Under certain additional assumptions on P the same holds also for b = 0. The proof relies on a modification of Nevanlinna theory in combination with the Zalcman–Pang rescaling method. Furthermore we prove some corresponding results of Picard type for functions meromorphic in the plane.
引用
收藏
页码:429 / 452
页数:23
相关论文
共 50 条
  • [1] Differential polynomials with dilations in the argument and normal families
    Grahl, Juergen
    MONATSHEFTE FUR MATHEMATIK, 2011, 162 (04): : 429 - 452
  • [2] Normal families concerning partially shared functions and differential polynomials
    Bharti, Nikhil
    Kumar, Rahul
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (12)
  • [3] On normal families and differential polynomials for meromorphic functions
    Lu, Qian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) : 394 - 400
  • [4] Normal Criterion on Differential Polynomials
    Zeng, Cuiping
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 285 - 290
  • [5] A NORMAL CRITERION CONCERNING SEQUENCE OF FUNCTIONS AND THEIR DIFFERENTIAL POLYNOMIALS
    Bharti, N.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2024, 13 (02): : 3 - 24
  • [6] Differential inequalities and quasi-normal families
    Bar, Roi
    Grahl, Juergen
    Nevo, Shahar
    ANALYSIS AND MATHEMATICAL PHYSICS, 2014, 4 (1-2) : 63 - 71
  • [7] Differential inequalities and quasi-normal families
    Roi Bar
    Jürgen Grahl
    Shahar Nevo
    Analysis and Mathematical Physics, 2014, 4 : 63 - 71
  • [8] A Theorem on Homogeneous Differential Polynomials
    Buck, Matthew
    RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 805 - 815
  • [9] A Theorem on Homogeneous Differential Polynomials
    Matthew Buck
    Results in Mathematics, 2013, 63 : 805 - 815
  • [10] SOME INEQUALITIES OF DIFFERENTIAL POLYNOMIALS
    Xu, Junfeng
    Yi, Hongxun
    Zhang, Zhanliang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2009, 12 (01): : 99 - 113