On the Bifurcation of Limit Cycles Due to Polynomial Perturbations of Hamiltonian Centers

被引:0
作者
Ilker E. Colak
Jaume Llibre
Claudia Valls
机构
[1] Drexel University,Department of Mathematics
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[3] Instituto Superior Técnico,Departamento de Matemática
[4] Universidade de Lisboa,undefined
来源
Mediterranean Journal of Mathematics | 2017年 / 14卷
关键词
Ordinary differential system; polynomial system; planar system; Hamiltonian system; center; limit cycle; Melnikov function; Primary 34C05; Secondary 37C10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the number of limit cycles bifurcating from the period annulus of a real planar polynomial Hamiltonian ordinary differential system with a center at the origin when it is perturbed in the class of polynomial vector fields of a given degree.
引用
收藏
相关论文
共 22 条
[1]  
Andronov AA(1929)Les cycles limites de Poincaré et la théorie des oscillations autoentretenues C. R. Acad. Sci. Paris 189 559-561
[2]  
Buica A(2010)Bifurcation of limit cycles from a polynomial degenerate center Adv. Nonlinear Stud. 10 597-609
[3]  
Giné J(1996)Succesive derivatives of a first return map, application to the study of quadratic vector fields Ergod. Theory Dyn. Syst. 16 87-96
[4]  
Llibre J(2012)Periodic orbits and their stability in the Rössler prototype-4 system Phys. Lett. A 376 2234-2237
[5]  
Françoise JP(2016)Center problem for systems with two monomial nonlinearities Commun. Pure Appl. Anal. 15 577-598
[6]  
García IA(1902)Mathematische Probleme. English transl. in Bull. Am. Math. Soc. 8 437-479
[7]  
Llibre J(1999)The number of limit cycles due to polynomial perturbations of the harmonic oscillator Math. Proc. Camb. Philos. Soc. 127 317-322
[8]  
Maza S(1928)Etude des oscillations entretenues Rev. Générale de l’Electricité 23 901-912
[9]  
Gasull A(2011)Limit cycles for a class of second order differential equations Phys. Lett. A 375 1080-1083
[10]  
Giné J(2014)On the limit cycles bifurcating from a quadratic reversible center of genus one Mediterr. J. Math. 11 373-392