New upper bounds on the size of permutation codes under Kendall τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document}-metric

被引:0
作者
Alireza Abdollahi
Javad Bagherian
Fatemeh Jafari
Maryam Khatami
Farzad Parvaresh
Reza Sobhani
机构
[1] University of Isfahan,Department of Pure Mathematics, Faculty of Mathematics and Statistics
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
[3] University of Isfahan,Department of Electrical Engineering, Faculty of Engineering
[4] University of Isfahan,Department of Applied Mathematics and Computer Science, Faculty of Mathematics and Statistics
关键词
Rank modulation; Kendall ; -metric; Permutation codes; 94B25; 94B65; 68P30;
D O I
10.1007/s12095-023-00642-6
中图分类号
学科分类号
摘要
We give two methods that are based on the representation theory of symmetric groups to study the largest size P(n, d) of permutation codes of length n, i.e., subsets of the set Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document} of all permutations on {1,⋯,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,\dots ,n\}$$\end{document} with the minimum distance (at least) d under the Kendall τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document}-metric. The first method is an integer programming problem obtained from the transitive actions of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}. The second method can be applied to refute the existence of perfect codes in Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}. Applying these methods, we reduce the known upper bound (n-1)!-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)!-1$$\end{document} for P(n, 3) to (n-1)!-⌈n3⌉+2≤(n-1)!-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)!-\lceil \frac{n}{3}\rceil +2\le (n-1)!-2$$\end{document}, whenever n≥11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 11$$\end{document} is prime. If n=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=6$$\end{document}, 7, 11, 13, 14, 15, 17, the known upper bound for P(n, 3) is decreased by 3, 3, 9, 11, 1, 1, 4, respectively.
引用
收藏
页码:891 / 903
页数:12
相关论文
共 20 条
  • [1] Barg A(2010)Codes in permutations and error correction for rank modulation IEEE Trans. Inform. Theory 56 3158-3165
  • [2] Mazumdar A(2015)Bounds on the size of permutation codes with the Kendall IEEE Trans. Inform. Theory 61 3241-3250
  • [3] Buzaglo S(1990)-metric Pacific J. Math. 143 47-67
  • [4] Etzion T(2010)Codes transforms and the spectrum of the symmetric group IEEE Trans. Inform. Theory 56 2112-2120
  • [5] Edelman PH(1999)Correcting charge-constrained errors in the rank-modulation scheme Eur. J. Combinat. 20 101-114
  • [6] White D(2016)Upper bounds on permutation codes via linear programming Letters, No. 10 1912-1915
  • [7] Jiang A(2017)Largest permutation codes with the Kendall Des. Codes Cryptogr. 85 533-545
  • [8] Mateescu R(2021)-metric in Des. Codes Cryptogr. 89 2511-2531
  • [9] Schwartz M(undefined) and undefined undefined undefined-undefined
  • [10] Bruck J(undefined), IEEE Comm undefined undefined undefined-undefined