Subadditivity Inequalities in von Neumann Algebras and Characterization of Tracial Functionals

被引:0
|
作者
O. E. Tikhonov
机构
[1] Kazan State University,Research Institute of Mathematics and Mechanics
来源
Positivity | 2005年 / 9卷
关键词
algebra of matrices; functional calculus; positive normal functional; subadditivity inequality; tracial functional; von Neumann algebra; 46L30; 15A45;
D O I
暂无
中图分类号
学科分类号
摘要
We examine under which assumptions on a positive normal functional φ on a von Neumann algebra, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}$$\end{document} and a Borel measurable function f: R+ → R with f(0) = 0 the subadditivity inequality φ (f(A+B)) ≤ φ(f(A))+φ (f (B)) holds true for all positive operators A, B in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}$$\end{document}. A corresponding characterization of tracial functionals among positive normal functionals on a von Neumann algebra is presented.
引用
收藏
页码:259 / 264
页数:5
相关论文
共 50 条