Benford’s Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem

被引:0
作者
Arno Berger
Theodore P. Hill
机构
[1] University of Alberta,Department of Mathematical and Statistical Sciences
[2] Georgia Institute of Technology,School of Mathematics
来源
The Mathematical Intelligencer | 2011年 / 33卷
关键词
Large Spread; Decimal Digit; Positive Random Variable; Mathematical Intelligencer Figure; Easy Derivation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:85 / 91
页数:6
相关论文
共 13 条
  • [1] Benford F.(1938)The Law of Anomalous Numbers Proc. Amer. Philosophical Soc. 78 551-572
  • [2] Berger A.(2005)One-dimensional Dynamical Systems and Benford’s Law Trans. Amer. Math. Soc. 357 197-219
  • [3] Bunimovich L.(2009)A Simple Explanation of Benford’s Law American Statistician 63 20-25
  • [4] Hill T.P.(1959)Mathematical Games: Problems involving questions of probability and ambiguity Scientific American 201 174-182
  • [5] Fewster R.(1995)Base-Invariance Implies Benford’s Law Proc. Amer. Math. Soc. 123 887-895
  • [6] Gardner M.(1995)A Statistical Derivation of the Significant-Digit Law Statistical Science 10 354-363
  • [7] Hill T.P.(1881)Note on the Frequency of Use of the Different Digits in Natural Numbers Amer. J. Math. 4 39-40
  • [8] Hill T.P.(1961)On the Distribution of First Significant Digits Annals of Mathematical Statistics 32 1223-1230
  • [9] Newcomb S.(1976)The First Digit Problem Amer. Mathematical Monthly 83 521-538
  • [10] Pinkham R.(1985)The First Digit Phenomenon Again Proc. Amer. Philosophical Soc. 129 211-219