Kantowski-Sachs and Bianchi type models with a general non-canonical scalar field

被引:0
作者
T. Singh
R. Chaubey
Ashutosh Singh
机构
[1] Institute of Science,DST
[2] Banaras Hindu University,Centre for Interdisciplinary Mathematical Sciences
[3] Indian Institute of Advanced Study,undefined
来源
Gravitation and Cosmology | 2017年 / 23卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with spatially homogeneous and anisotropic Kantowski-Sachs and Bianchi universes with a general non-canonical scalar field with the Lagrangian L = F(X) − Ω(ϕ), where X=12ϕiϕi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X = \frac{1}{2}{\phi _i}{\phi ^i}$$\end{document}. We discuss a general non-canonical scalar field in three different cosmologies: (i) cosmology with a constant potential, Ω(ϕ) = Ω0 = const, (ii) cosmology with a constant equation-of-state parameter, i.e., γϕ = const, and (iii) cosmology with a constant speed of sound, i.e., cs2 = const. For a constant potential, we have shown that the k-essence Lagrangian and the Lagrangian of the present model are equivalent. Dissipation of anisotropy, when the universe is filled with a general non-canonical scalar field, is investigated. The existence of an average bounce in Kantowski-Sachs and locally rotationally symmetric Bianchi-I and Bianchi-III models is discussed in detail.
引用
收藏
页码:195 / 200
页数:5
相关论文
共 50 条
  • [21] Scalar Field Kantowski-Sachs Solutions in Teleparallel F(T) Gravity
    Landry, Alexandre
    [J]. UNIVERSE, 2025, 11 (01)
  • [22] Kantowski-Sachs universe with dark energy fluid and massive scalar field
    Raju, K. Deniel
    Rao, M. P. V. V. Bhaskara
    Aditya, Y.
    Vinutha, T.
    Reddy, D. R. K.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2020, 98 (11) : 993 - 998
  • [23] Bianchi type-I, III, V, VIo and Kantowski-Sachs models in scalar-tensor theories with dynamic cosmological constant
    Singh, T.
    Chaubey, R.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2008, 318 (3-4) : 231 - 236
  • [24] Exact Kantowski-Sachs cosmological models in general theory of relativity
    Tiwari, Rishi Kumar
    Dwivedi, Uttam Kumar
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2008, 318 (3-4) : 249 - 253
  • [25] Noether symmetries of Bianchi I, Bianchi III, and Kantowski-Sachs spacetimes in scalar-coupled gravity theories
    Camci, Ugur
    Kucukakca, Yusuf
    [J]. PHYSICAL REVIEW D, 2007, 76 (08)
  • [26] Kantowski-Sachs model in non-minimally coupled scalar theory
    Taser, Dogukan
    Dogru, Melis Ulu
    Aydin, Huseyin
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (09)
  • [27] T-MODELS AND KANTOWSKI-SACHS MODELS
    Korkina, M. P.
    Kopteva, E. M.
    Kazemir, V. S.
    [J]. UKRAINIAN JOURNAL OF PHYSICS, 2008, 53 (02): : 107 - 111
  • [28] Cosmologies with a general non-canonical scalar field
    Fang, Wei
    Lu, H. Q.
    Huang, Z. G.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (15) : 3799 - 3811
  • [29] Kantowski-Sachs cosmology in scalar-torsion theory
    Paliathanasis, Andronikos
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (03):
  • [30] CURVATURE INVARIANTS FOR KANTOWSKI-SACHS METRICS WITH SOURCE - A CONFORMALLY INVARIANT SCALAR FIELD
    LAKE, K
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (12) : 5900 - 5907