Upper bound involving parameter σ2 for the rainbow connection number

被引:0
作者
Jiu-ying Dong
Xue-liang Li
机构
[1] Center for Combinatorics and LPMC-TJKLC Nankai University,
来源
Acta Mathematicae Applicatae Sinica, English Series | 2013年 / 29卷
关键词
rainbow coloring; rainbow connection; connected two-step dominating set; parameter ; (; ); 05C15; 05C40; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected graph of order n. The rainbow connection number rc(G) of G was introduced by Chartrand et al. Chandran et al. used the minimum degree δ of G and obtained an upper bound that rc(G) ≤ 3n/(δ +1)+3, which is tight up to additive factors. In this paper, we use the minimum degree-sum σ2 of G to obtain a better bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rc(G) \leqslant \tfrac{{6n}} {{\sigma _2 + 2}} + 8$$\end{document}, especially when δ is small (constant) but σ2 is large (linear in n).
引用
收藏
页码:685 / 688
页数:3
相关论文
共 20 条
[1]  
Caro Y(2008)On rainbow connection Electron J. Combin. 15 R57-347
[2]  
Lev A(2011)Hardness and algorithms for rainbow connectivity J. Comb. Optim. 21 330-218
[3]  
Roditty Y(2012)Rainbow connection number and connected dominating sets J. Graph Theory 71 206-98
[4]  
Tuza Z(2008)Rainbow connection in graphs Math. Bohem. 133 85-38
[5]  
Yuster R(2013)Rainbow connections of graphs: A survey Graphs Combin. 291 1-undefined
[6]  
Chakraborty S(undefined)undefined undefined undefined undefined-undefined
[7]  
Fischer E(undefined)undefined undefined undefined undefined-undefined
[8]  
Matsliah A(undefined)undefined undefined undefined undefined-undefined
[9]  
Yuster R(undefined)undefined undefined undefined undefined-undefined
[10]  
Chandran L(undefined)undefined undefined undefined undefined-undefined