Improved Peierls Argument for High-Dimensional Ising Models

被引:0
作者
J. L. Lebowitz
A. E. Mazel
机构
来源
Journal of Statistical Physics | 1998年 / 90卷
关键词
Ising model; Peierls contour; low-temperature expansion; high dimension;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the low-temperature expansion for the Ising model on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}^d ,d \geqslant 2$$ \end{document}, with ferromagnetic nearest neighbor interactions in terms of Peierls contours. We prove that the expansion converges for all temperatures smaller than Cd(log d)−1, which is the correct order in d.
引用
收藏
页码:1051 / 1059
页数:8
相关论文
共 15 条
[1]  
Aizenman M.(1987)Percolation of the minority spins in high-dimensional Ising models J. Stat. Phys. 49 859-865
[2]  
Bricmont J.(1989)A note on the Ising model in high dimensions Comm. Math. Phys. 122 597-607
[3]  
Lebowitz J. L.(1996)Estimates of semi-invariants for the Ising model at low temperatures, Topics in statistical and theoretical physics Amer. Math. Soc. Transl. (2) 177 59-81
[4]  
Bricmont J.(1967)Correlations in Ising ferromagnets, III. A mean-field bound for binary correlations Comm. Math. Phys. 6 121-127
[5]  
Kesten H.(1986)Cluster expansion for abstract polymer models Comm. Math. Phys. 103 491-498
[6]  
Lebowitz J. L.(1996)Ground states of boson quantum lattice model Amer. Math. Soc. Transl. (2) 171 185-226
[7]  
Schonmann R. H.(1936)On Ising's model of ferromagnetism Proc. Camb. Phil. Soc. 32 477-481
[8]  
Dobrushin R. L.(1979)A remark on Dobrushin's uniqueness theorem Comm. Math. Phys. 68 183-185
[9]  
Griffiths R. B.(undefined)undefined undefined undefined undefined-undefined
[10]  
Kotecky R.(undefined)undefined undefined undefined undefined-undefined