Stable Ulrich bundles on cubic fourfolds

被引:0
作者
Hoang, Truong Le [1 ,2 ]
Hoang, Yen Ngoc [3 ]
机构
[1] VAST, Inst Math, 18 Hoang Quoc Viet Rd, Hanoi 10307, Vietnam
[2] Nihon Univ, Dept Math, Coll Humanities & Sci, 3-25-40 Sakurajosui,Setagaya Ku, Tokyo 1568550, Japan
[3] Thai Nguyen Univ Educ, Dept Math, 20 Luong Ngoc Quyen St, Thai Nguyen City, Thai Nguyen Pro, Vietnam
关键词
COHEN-MACAULAY MODULES; VECTOR-BUNDLES; ACM BUNDLES; REPRESENTATION TYPE; HYPERSURFACES; RINGS; TAME; CLASSIFICATION; VARIETIES; SURFACES;
D O I
10.1007/s00229-023-01499-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we examine the presence of Ulrich bundles on cubic fourfolds. We establish necessary and sufficient conditions for the existence of Ulrich bundles of a specific rank r. As a consequence, we show the existence of a family of non-decomposable Ulrich bundles of rank r on certain cubic fourfolds, which are dependent on approximately r parameters and have wild representation type. Our study also encompasses examples of arithmetically Cohen-Macaulay smooth surfaces that are not intersections of cubic fourfolds and codimension two subvarieties.
引用
收藏
页码:243 / 267
页数:25
相关论文
共 82 条
[31]   Rank two aCM bundles on the del Pezzo fourfold of degree 6 and its general hyperplane section [J].
Casnati, Gianfranco ;
Faenzi, Daniele ;
Malaspina, Francesco .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (03) :585-609
[32]   Special Ulrich bundles on non-special surfaces with pg = q=0 [J].
Casnati, Gianfranco .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (08)
[33]  
Chiantini L, 2005, COLLECT MATH, V56, P85
[34]   Rank 2 arithmetically Cohen-Macaulay bundles on a general quintic surface [J].
Chiantini, Luca ;
Faenzi, Daniele .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (12) :1691-1708
[35]  
Coskun E., 2017, A Survey of Ulrich Bundles, Analytic and Algebraic Geometry, P85
[36]  
Coskun E, 2012, DOC MATH, V17, P1003
[37]   The geometry of Ulrich bundles on del Pezzo surfaces [J].
Coskun, Emre ;
Kulkarni, Rajesh S. ;
Mustopa, Yusuf .
JOURNAL OF ALGEBRA, 2013, 375 :280-301
[38]   Ulrich Schur bundles on flag varieties [J].
Coskun, Izzet ;
Costa, Laura ;
Huizenga, Jack ;
Maria Miro-Roig, Rosa ;
Woolf, Matthew .
JOURNAL OF ALGEBRA, 2017, 474 :49-96
[39]  
Costa L, 2015, MATH ANN, V361, P443, DOI 10.1007/s00208-014-1076-9
[40]  
Costa L., 2021, STUDIES MATH, V77