Liquid-surface entrainment induced by shocked air stream

被引:0
作者
V. Rodriguez
G. Jourdan
A. Marty
A. Allou
J.-D. Parisse
机构
[1] Aix-Marseille Université,IUSTI, UMR CNRS 7343
[2] Institut Pprime,undefined
[3] UPR CNRS 3346,undefined
[4] ENSMA,undefined
[5] CEA,undefined
[6] DEN,undefined
[7] Cadarache,undefined
[8] DTN/STCP/LTRS,undefined
[9] French Air Force Academy,undefined
[10] Salon de Provence,undefined
[11] BA701,undefined
来源
Shock Waves | 2019年 / 29卷
关键词
Experiments; Shock wave; Air–water interface; Droplet dispersion;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, we experimentally studied, in a shock tube environment, shock waves propagating over horizontal free water layers having depths of 10, 20, and 30 mm for shock wave Mach numbers Mis\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\mathrm {is}$$\end{document} equal to 1.1 and 1.4. The qualitative interaction process was observed by means of high-speed visualizations, and the pressures arising in the air and in the water layer were measured and interpreted in terms of the various incident and refracted shock waves in air and water; in particular, it was concluded that the compression wave in the water is driven by the planar shock wave in the air. Additional experiments have been conducted and the novel contributions of the present technical note are quantitative results regarding the liquid-surface entrainment. At low Mach number (Mis=1.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\mathrm {is}=1.1$$\end{document}), we show that the velocity of the droplets ejected into the air is independent of the water depth, unlike the wavelength of initial ripples and the angle of ejection. When the shock wave strength increases (Mis=1.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\mathrm {is}=1.4$$\end{document}), the dispersion of a very thin droplet mist and a single large wave take place. We show that the thickening of the water mist and the velocity of the subsequent large wave decreases with the water-layer depth.
引用
收藏
页码:361 / 364
页数:3
相关论文
共 10 条
  • [1] Rodriguez V(2016)Planar shock wave sliding over a water layer Exp. Fluids 57 125-undefined
  • [2] Jourdan G(2013)Vortices catapult droplets in atomization Phys. Fluids 25 112109-undefined
  • [3] Marty A(undefined)undefined undefined undefined undefined-undefined
  • [4] Allou A(undefined)undefined undefined undefined undefined-undefined
  • [5] Parisse J-D(undefined)undefined undefined undefined undefined-undefined
  • [6] Jerome JJS(undefined)undefined undefined undefined undefined-undefined
  • [7] Marty S(undefined)undefined undefined undefined undefined-undefined
  • [8] Matas J-P(undefined)undefined undefined undefined undefined-undefined
  • [9] Zaleski S(undefined)undefined undefined undefined undefined-undefined
  • [10] Hoepffner J(undefined)undefined undefined undefined undefined-undefined