Local convergence of a family of iterative methods for Hammerstein equations

被引:0
作者
Eulalia Martínez
Sukhjit Singh
José L. Hueso
Dharmendra K. Gupta
机构
[1] Universitat Politècnica de València,Instituto Universitario de Matemática Multidisciplinar
[2] Indian Institute of Technology Kharagpur,Department of Mathematics
[3] Universitat Politècnica de València,Instituto Universitario de Matemática Pura y Aplicada
来源
Journal of Mathematical Chemistry | 2016年 / 54卷
关键词
Nonlinear systems; Iterative method; Banach space ; Local convergence; Complex dynamics; Hammerstein equation; 47H99; 65H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give a local convergence result for a uniparametric family of iterative methods for nonlinear equations in Banach spaces. We assume boundedness conditions involving only the first Fréchet derivative, instead of using boundedness conditions for high order derivatives as it is usual in studies of semilocal convergence, which is a drawback for solving some practical problems. The existence and uniqueness theorem that establishes the convergence balls of these methods is obtained. We apply this theory to different examples, including a nonlinear Hammerstein equation that have many applications in chemistry and appears in problems of electro-magnetic fluid dynamics or in the kinetic theory of gases. With these examples we illustrate the advantages of these results. The global convergence of the method is addressed by analysing the behaviour of the methods on complex polynomials of second degree.
引用
收藏
页码:1370 / 1386
页数:16
相关论文
共 45 条
  • [1] Argyros IK(2011)On the semilocal convergence of efficient ChebyshevSecant-type methods J. Comput. Appl. Math. 235 3195-3206
  • [2] Ezquerro JA(2014)Semilocal convergence of a family of iterative methods in Banach spaces Numer. Algorithms 67 365-384
  • [3] Gutiárrez JM(2011)Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces Numer. Algorithms 54 497-516
  • [4] Hernández MA(2007)A variant of super Halley method with accelerated fourth-order convergence Appl. Math. Comput. 186 535-539
  • [5] Hilout S(2012)Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces Numer. Algorithms 59 623-638
  • [6] Hueso José L(2008)A modified Chebyshevs iterative method with at least sixth order of convergence Appl. Math. Comput. 206 164-174
  • [7] Martínez E(2011)Semilocal convergence of a sixth-order Jarratt method in Banach spaces Numer. Algorithms 57 441-456
  • [8] Wang X(2015)On the local convergence of a fifth-order iterative method in Banach spaces Appl. Math. Comput. 251 396-403
  • [9] Gu C(2013)On the local convergence of fast two-step Newton-like methods for solving nonlinear equations J. Comput. Appl. Math. 245 1-9
  • [10] Kou J(2000)A variant of Newton’s method with accelerated third-order convergence Appl. Math. Lett. 13 87-93