Bounded cohomology of finitely generated Kleinian groups

被引:0
|
作者
James Farre
机构
[1] University of Utah,Department of Mathematics
来源
Geometric and Functional Analysis | 2018年 / 28卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Any action of a group Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma}$$\end{document} on H3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{H}^3}$$\end{document} by isometries yields a class in degree three bounded cohomology by pulling back the volume cocycle to Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma}$$\end{document}. We prove that the bounded cohomology of finitely generated Kleinian groups without parabolic elements distinguishes the asymptotic geometry of geometrically infinite ends of hyperbolic 3-manifolds. That is, if two homotopy equivalent hyperbolic manifolds with infinite volume and without parabolic cusps have different geometrically infinite end invariants, then they define a 2 dimensional subspace of bounded cohomology. Our techniques apply to classes of hyperbolic 3-manifolds that have sufficiently different end invariants, and we give explicit bases for vector subspaces whose dimension is uncountable. We also show that these bases are uniformly separated in pseudo-norm, extending results of Soma. The technical machinery of the Ending Lamination Theorem allows us to analyze the geometrically infinite ends of hyperbolic 3-manifolds with unbounded geometry.
引用
收藏
页码:1597 / 1640
页数:43
相关论文
共 50 条