Silicon and porous MWCNT composite as high capacity anode for lithium-ion batteries

被引:0
|
作者
Arunakumari Nulu
Venugopal Nulu
Keun Yong Sohn
机构
[1] Inje University,Department of Nanoscience and Engineering, Center for Nano Manufacturing
来源
Korean Journal of Chemical Engineering | 2020年 / 37卷
关键词
Silicon; Porous Carbon Nano-tubes; Composite; Anode Material; Li-ion Batteries;
D O I
暂无
中图分类号
学科分类号
摘要
A silicon/porous multi-walled carbon nanotubes composite was synthesized using a simple method. A mixture comprising silicon nanoparticles and multi-walled carbon nanotubes was prepared by a mini ball milling method followed by annealing at low temperature. The low-temperature annealing treatment allows the aggregation of silicon nanoparticles and propels them to adhere to the outer walls of carbon nanotubes without the formation of a SiOx layer on Si nanoparticles. Mild oxidation occurring on the carbon tube walls provides additional surface defects. The obtained composite, which was studied as an anode for Li-ion batteries, exhibited excellent cyclability and superior rate capability compared with pristine silicon nanoparticles. The improved electrochemical performance of the composite can be attributed to the electrically conductive carbon tubes, easy access of the electrolyte ions into the porous nanotube walls, and mechanical support provided by the carbon matrix. As a result, the proposed composite can sustain high discharge capacities of 1,685 mAh g−1 at 1C rate after 80 cycles and 913 mAh g−1 at 5C rate after 100 cycles.
引用
收藏
页码:1795 / 1802
页数:7
相关论文
共 50 条
  • [1] Silicon and porous MWCNT composite as high capacity anode for lithium-ion batteries
    Nulu, Arunakumari
    Nulu, Venugopal
    Sohn, Keun Yong
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 37 (10) : 1795 - 1802
  • [2] High capacity graphite-silicon composite anode material for lithium-ion batteries
    Fuchsbichler, B.
    Stangl, C.
    Kren, H.
    Uhlig, F.
    Koller, S.
    JOURNAL OF POWER SOURCES, 2011, 196 (05) : 2889 - 2892
  • [3] Porous germanium enabled high areal capacity anode for lithium-ion batteries
    Mishra, Kuber
    Liu, Xiao-Chen
    Ke, Fu-Sheng
    Zhou, Xiao-Dong
    COMPOSITES PART B-ENGINEERING, 2019, 163 : 158 - 164
  • [4] Foamed silicon particles as a high capacity anode material for lithium-ion batteries
    Sohn, Myungbeom
    Park, Hyeong-Il
    Kim, Hansu
    CHEMICAL COMMUNICATIONS, 2017, 53 (87) : 11897 - 11900
  • [5] High capacity silicon/carbon composite anode materials for lithium ion batteries
    Wen, ZS
    Yang, J
    Wang, BF
    Wang, K
    Liu, Y
    ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (02) : 165 - 168
  • [6] Micromechanisms of Capacity Fade in Silicon Anode for Lithium-Ion Batteries
    Pal, S.
    Damle, S.
    Patel, S.
    Dutta, M. K.
    Kumta, P. N.
    Maiti, S.
    BATTERY/ENERGY TECHNOLOGY (GENERAL) - 220TH ECS MEETING, 2012, 41 (11): : 87 - 99
  • [7] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Fei Dou
    Liyi Shi
    Guorong Chen
    Dengsong Zhang
    Electrochemical Energy Reviews, 2019, 2 : 149 - 198
  • [8] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Dou, Fei
    Shi, Liyi
    Chen, Guorong
    Zhang, Dengsong
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (01) : 149 - 198
  • [9] Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries
    Yue, Lu
    Zhang, Wenhui
    Yang, Jingfeng
    Zhang, Lingzhi
    ELECTROCHIMICA ACTA, 2014, 125 : 206 - 217
  • [10] Transforming silicon slag into high-capacity anode material for lithium-ion batteries
    Vanpeene, Victor
    Heitz, Alexandre
    Herkendaal, Natalie
    Soucy, Patrick
    Douillard, Thierry
    Roue, Lionel
    BATTERY ENERGY, 2022, 1 (04):