Construction of a DArT-seq marker–based genetic linkage map and identification of QTLs for yield in tea (Camellia sinensis (L.) O. Kuntze)

被引:0
|
作者
M. P. Malebe
R. K. Koech
E. G. N. Mbanjo
S. M. Kamunya
A. A. Myburg
Z. Apostolides
机构
[1] University of Pretoria,Department of Biochemistry, Genetics and Microbiology
[2] Tea Research Institute,Kenya Agriculture and Livestock Research Organization
[3] International Institute of Tropical Agriculture (IITA),undefined
来源
Tree Genetics & Genomes | 2021年 / 17卷
关键词
Yield; QTL; NGS marker; Linkage map;
D O I
暂无
中图分类号
学科分类号
摘要
As the second most consumed non-alcoholic beverage, the tea plant (Camellia sinensis) has high economic value. Tea improvement efforts that largely target economic traits such as yield have traditionally relied on conventional breeding approaches. The tea plant’s perennial nature and its long generation time make conventional approaches time-consuming and labour-intensive. Biotechnology provides a complementary tool for accelerating tea improvement programmes through marker-assisted selection (MAS). Quantitative trait loci (QTLs) identified on linkage maps are an essential prerequisite to the implementation of MAS. QTL analysis was performed on yield data over 3 years (2010–2012) across two sites (Timbilil and Kangaita, in Kenya), based on two parental framework linkage maps arising from a population of 261 F1 progeny, derived from a reciprocal cross between GW Ejulu and TRFK 303/577. The maps contain 15 linkage groups each, this corresponds to the haploid chromosome number of tea (2n=2x=30). The total length of the parental maps was 1028.1 cM for GW Ejulu and 1026.6 cM for TRFK 303/577 with an average locus spacing of 5.5 cM and 5.4 cM, respectively. A total of 13 QTLs were identified over the three measurement years. The 13 QTLs had LOD values ranging from 1.98 to 7.24 and explained 3.4% to 12% of the phenotypic variation. The two sites had seven mutually detected QTLs.
引用
收藏
相关论文
共 50 条
  • [21] Effect of fluoride on the biosynthesis of catechins in tea [Camellia sinensis (L.) O. Kuntze] leaves
    Yang, Xiao
    Yu, Zhi
    Zhang, Beibei
    Huang, Jin
    Zhang, Yuehua
    Fang, Fengxiang
    Li, Chunlei
    Zhu, Hongkai
    Chen, Yuqiong
    SCIENTIA HORTICULTURAE, 2015, 184 : 78 - 84
  • [22] Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze)
    Zhang, Lei
    Li, Qiong
    Ma, Lifeng
    Ruan, Jianyun
    PLANT AND SOIL, 2013, 366 (1-2) : 659 - 669
  • [23] Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze)
    Lei Zhang
    Qiong Li
    Lifeng Ma
    Jianyun Ruan
    Plant and Soil, 2013, 366 : 659 - 669
  • [24] Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves
    van Breda, Shane V.
    van der Merwe, Chris F.
    Robbertse, Hannes
    Apostolides, Zeno
    PLANTA, 2013, 237 (03) : 849 - 858
  • [25] Yield Decline in Vegetatively Propagated Tea (Camellia sinensis (L.) O. Kuntze) under Continuous Mechanical Harvesting
    Madamombe, G. M.
    Taylor, N. J.
    Tesfamariam, E.
    II ALL AFRICA HORTICULTURE CONGRESS, 2013, 1007 : 857 - 862
  • [26] Boron re-translocation in tea (Camellia sinensis (L.) O. Kuntze) plants
    Roghieh Hajiboland
    Sara Bahrami-Rad
    Soodabeh Bastani
    Roser Tolrà
    Charlotte Poschenrieder
    Acta Physiologiae Plantarum, 2013, 35 : 2373 - 2381
  • [27] Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves
    Shane V. van Breda
    Chris F. van der Merwe
    Hannes Robbertse
    Zeno Apostolides
    Planta, 2013, 237 : 849 - 858
  • [28] Clonal variation of tea [Camellia sinensis (L.) O. Kuntze] in countering water deficiency
    Netto L.A.
    Jayaram K.M.
    Puthur J.T.
    Physiology and Molecular Biology of Plants, 2010, 16 (4) : 359 - 367
  • [29] Comparative study of cream in infusions of black tea and green tea [Camellia sinensis (L.) O. Kuntze]
    Liang, YR
    Lu, JL
    Zhang, LY
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2002, 37 (06): : 627 - 634
  • [30] Genomic and pedigree‐based predictive ability for quality traits in tea (Camellia sinensis (L.) O. Kuntze)
    Nelson Lubanga
    Festo Massawe
    Sean Mayes
    Euphytica, 2021, 217