Generalized Krasnoselskii–Mann-Type Iteration for Nonexpansive Mappings in Banach Spaces

被引:0
作者
You-Cai Zhang
Ke Guo
Tao Wang
机构
[1] China West Normal University,School of Mathematics and Information
来源
Journal of the Operations Research Society of China | 2021年 / 9卷
关键词
Krasnoselskii–Mann-type iteration; Nonexpansive mappings; Weak convergence; Accretive operator; proximal point algorithm; Banach spaces; 47H05; 47H09;
D O I
暂无
中图分类号
学科分类号
摘要
The Krasnoselskii–Mann iteration plays an important role in the approximation of fixed points of nonexpansive mappings, and it is well known that the classic Krasnoselskii–Mann iteration is weakly convergent in Hilbert spaces. The weak convergence is also known even in Banach spaces. Recently, Kanzow and Shehu proposed a generalized Krasnoselskii–Mann-type iteration for nonexpansive mappings and established its convergence in Hilbert spaces. In this paper, we show that the generalized Krasnoselskii–Mann-type iteration proposed by Kanzow and Shehu also converges in Banach spaces. As applications, we proved the weak convergence of generalized proximal point algorithm in the uniformly convex Banach spaces.
引用
收藏
页码:195 / 206
页数:11
相关论文
共 34 条
  • [11] Ansari QH(1967)Weak convergence of the successive approximation for non-expansive mappings in Banach spaces Bull. Am. Math. Soc. 73 591-597
  • [12] Yao JC(1996)Characterizations of Kadec–Klee properties in symmetric spaces of measurable functions Trans. Am. Math. Soc. 348 4895-4918
  • [13] Kim T(2017)Generalized Krasnoselskii–Mann-type iterations for nonexpansive mappings in Hilbert spaces Comput. Optim. Appl. 67 593-620
  • [14] Xu HK(2001)Weak convergence theorems for asymptotically nonexpansive mappings and semigroups Nonlinear Anal. 43 377-401
  • [15] Opial Z(1982)Equivalent norms and the fixed point property for nonexpansive mappings J. Lond. Math. Soc. 2 139-144
  • [16] Chilin VI(1993)Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process J. Math. Anal. Appl. 178 301-308
  • [17] Dodds PG(1991)Inequalities in Banach spaces with applications Nonlinear Anal. 16 1127-1138
  • [18] Sedaev AA(1967)Convergence theorems for sequences of nonlinear operators in Banach spaces Math. Z. 100 201-225
  • [19] Kanzow C(1970)Regularization d’inequations variationelles par approximations successives Rev. Fr. d’Inf. et de Rech. Oper. 4 154-159
  • [20] Shehu Y(1965)Proximité et dualité dans un espace hilbertien Bull. Soc. Math. Fr. 93 273-299