The Impact of the Wuhan Covid-19 Lockdown on Air Pollution and Health: A Machine Learning and Augmented Synthetic Control Approach

被引:0
作者
Matthew A. Cole
Robert J R Elliott
Bowen Liu
机构
[1] University of Birmingham,Department of Economics
来源
Environmental and Resource Economics | 2020年 / 76卷
关键词
Air pollution; Covid-19; Machine learning; Synthetic control; Health; Q53; Q52; I18; I15; C21; C23;
D O I
暂无
中图分类号
学科分类号
摘要
We quantify the impact of the Wuhan Covid-19 lockdown on concentrations of four air pollutants using a two-step approach. First, we use machine learning to remove the confounding effects of weather conditions on pollution concentrations. Second, we use a new augmented synthetic control method (Ben-Michael et al. in The augmented synthetic control method. University of California Berkeley, Mimeo, 2019. https://arxiv.org/pdf/1811.04170.pdf) to estimate the impact of the lockdown on weather normalised pollution relative to a control group of cities that were not in lockdown. We find NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} concentrations fell by as much as 24 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}g/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document} during the lockdown (a reduction of 63% from the pre-lockdown level), while PM10 concentrations fell by a similar amount but for a shorter period. The lockdown had no discernible impact on concentrations of SO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} or CO. We calculate that the reduction of NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} concentrations could have prevented as many as 496 deaths in Wuhan city, 3368 deaths in Hubei province and 10,822 deaths in China as a whole.
引用
收藏
页码:553 / 580
页数:27
相关论文
共 50 条
[41]   A multi-step machine learning approach to assess the impact of COVID-19 lockdown on NO2 attributable deaths in Milan and Rome, Italy [J].
Luca Boniardi ;
Federica Nobile ;
Massimo Stafoggia ;
Paola Michelozzi ;
Carla Ancona .
Environmental Health, 21
[42]   Impact of COVID-19 Lockdown on Air Quality in Moscow [J].
A. S. Ginzburg ;
V. A. Semenov ;
E. G. Semutnikova ;
M. A. Aleshina ;
P. V. Zakharova ;
E. A. Lezina .
Doklady Earth Sciences, 2020, 495 :862-866
[43]   Impact of COVID-19 Lockdown on Air Quality in Moscow [J].
Ginzburg, A. S. ;
Semenov, V. A. ;
Semutnikova, E. G. ;
Aleshina, M. A. ;
Zakharova, P. V. ;
Lezina, E. A. .
DOKLADY EARTH SCIENCES, 2020, 495 (01) :862-866
[44]   Predicting the effect of confinement on the COVID-19 spread using machine learning enriched with satellite air pollution observations [J].
Xing, Xiaofan ;
Xiong, Yuankang ;
Yang, Ruipu ;
Wang, Rong ;
Wang, Weibing ;
Kan, Haidong ;
Lu, Tun ;
Li, Dongsheng ;
Cao, Junji ;
Penuelas, Josep ;
Ciais, Philippe ;
Bauer, Nico ;
Boucher, Olivier ;
Balkanski, Yves ;
Hauglustaine, Didier ;
Brasseur, Guy ;
Morawska, Lidia ;
Janssens, Ivan A. ;
Wang, Xiangrong ;
Sardans, Jordi ;
Wang, Yijing ;
Deng, Yifei ;
Wang, Lin ;
Chen, Jianmin ;
Tang, Xu ;
Zhang, Renhe .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (33)
[45]   The Impact of COVID-19 Lockdown on Ambient Air Quality in Shanghai, 2022 [J].
Zhang, Qi ;
Zhang, Qian ;
Liu, Hui ;
Lu, Mingyue .
ATMOSPHERE, 2023, 14 (05)
[46]   Machine Learning Tools to Assess the Impact of COVID-19 Civil Measures in Atmospheric Pollution [J].
Kavouras, Ioannis ;
Kaselimi, Maria ;
Protopapadakis, Eftychios ;
Doulamis, Nikolaos .
THE 14TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2021, 2021, :396-403
[47]   Impact of the first induced COVID-19 lockdown on air quality in Israel [J].
Agami, Sarit ;
Dayan, Uri .
ATMOSPHERIC ENVIRONMENT, 2021, 262
[48]   Analysis of COVID-19 Lockdown to Understand Air Pollution Processes and Their Impacts on Health: A Case Study in the Western Balkans [J].
Belis, Claudio A. ;
Djatkov, Djordje ;
Toceva, Martina ;
Knezevic, Jasmina ;
Djukanovic, Gordana ;
Stefanovska, Aneta ;
Golubov, Nikola ;
Jovic, Biljana ;
Gavros, Andreas .
ATMOSPHERE, 2025, 16 (01)
[49]   An Explainable Machine Learning Approach for COVID-19's Impact on Mood States of Children and Adolescents during the First Lockdown in Greece [J].
Ntakolia, Charis ;
Priftis, Dimitrios ;
Charakopoulou-Travlou, Mariana ;
Rannou, Ioanna ;
Magklara, Konstantina ;
Giannopoulou, Ioanna ;
Kotsis, Konstantinos ;
Serdari, Aspasia ;
Tsalamanios, Emmanouil ;
Grigoriadou, Aliki ;
Ladopoulou, Konstantina ;
Koullourou, Iouliani ;
Sadeghi, Neda ;
O'Callaghan, Georgia ;
Lazaratou, Eleni .
HEALTHCARE, 2022, 10 (01)
[50]   Impact of the COVID-19 lockdown on roadside traffic-related air pollution in Shanghai, China [J].
Wu, Cui-lin ;
Wang, Hong-wei ;
Cai, Wan-jin ;
He, Hong-di ;
Ni, An-ning ;
Peng, Zhong-ren .
BUILDING AND ENVIRONMENT, 2021, 194