Complexity of the Improper Twin Edge Coloring of Graphs

被引:0
作者
Paniz Abedin
Saieed Akbari
Marc Demange
Tınaz Ekim
机构
[1] Sharif University of Technology,Department of Mathematical Sciences
[2] RMIT University,School of Science
[3] Bogazici University,Department of Industrial Engineering
来源
Graphs and Combinatorics | 2017年 / 33卷
关键词
Modular chromatic index; Twin edge/vertex coloring; Odd/even color classes; NP-hardness;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph whose each component has order at least 3. Let s:E(G)→Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s : E(G) \rightarrow {\mathbb {Z}}_k$$\end{document} for some integer k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} be an improper edge coloring of G (where adjacent edges may be assigned the same color). If the induced vertex coloring c:V(G)→Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c : V (G) \rightarrow {\mathbb {Z}}_k$$\end{document} defined by c(v)=∑e∈Evs(e)inZk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(v) = \sum _{e\in E_v} s(e) \text{ in } {\mathbb {Z}}_k,$$\end{document} (where the indicated sum is computed in Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_k$$\end{document} and Ev\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_v$$\end{document} denotes the set of all edges incident to v) results in a proper vertex coloring of G, then we refer to such a coloring as an improper twin k-edge coloring. The minimum k for which G has an improper twin k-edge coloring is called the improper twin chromatic index of G and is denoted by χit′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{it}(G)$$\end{document}. It is known that χit′(G)=χ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{it}(G)=\chi (G)$$\end{document}, unless χ(G)≡2(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (G) \equiv 2 \pmod 4$$\end{document} and in this case χit′(G)∈{χ(G),χ(G)+1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{it}(G)\in \{\chi (G), \chi (G)+1\}$$\end{document}. In this paper, we first give a short proof of this result and we show that if G admits an improper twin k-edge coloring for some positive integer k, then G admits an improper twin t-edge coloring for all t≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge k$$\end{document}; we call this the monotonicity property. In addition, we provide a linear time algorithm to construct an improper twin edge coloring using at most k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document} colors, whenever a k-vertex coloring is given. Then we investigate, to the best of our knowledge the first time in literature, the complexity of deciding whether χit′(G)=χ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{it}(G)=\chi (G)$$\end{document} or χit′(G)=χ(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{it}(G)=\chi (G)+1$$\end{document}, and we show that, just like in case of the edge chromatic index, it is NP-hard even in some restricted cases. Lastly, we exhibit several classes of graphs for which the problem is polynomial.
引用
收藏
页码:595 / 615
页数:20
相关论文
共 35 条
[1]  
Addario-Berry L(2005)Vertex colouring edge partitions J. Comb. Theory (B) 94 237-244
[2]  
Aldred REL(2014)On twin edge colorings of graphs Discuss. Math. Graph Theory 34 613-627
[3]  
Dalal K(2016)Group sum chromatic number of graphs Eur. J. Comb. 55 73-81
[4]  
Reed BA(1977)The solution of the four-color map problem Sci. Amer. 237 108-121
[5]  
Andrews E(1941)On colouring the nodes of a network Math. Proc. Camb. Philos. Soc. 37 194-197
[6]  
Helenius L(2006)On the neighbour-distinguishing index of a graph Graphs Comb. 22 341-350
[7]  
Johnston D(2013)Neighbor sum distinguishing index Graphs Comb. 29 1329-1336
[8]  
VerWys J(2011)Modular neighbor-distinguishing edge colorings of graphs J. Combin. Math. Combin. Comput. 76 159-175
[9]  
Zhang Ping(2012)On modular chromatic indexes of graphs J. Combin. Math. Combin. Comput. 82 295-306
[10]  
Anholcer M(2004)Edge weights and vertex colours J. Combin. Theory (B) 91 151-157