Oxidation-resistant all-perovskite tandem solar cells in substrate configuration

被引:0
作者
Yurui Wang
Renxing Lin
Xiaoyu Wang
Chenshuaiyu Liu
Yameen Ahmed
Zilong Huang
Zhibin Zhang
Hongjiang Li
Mei Zhang
Yuan Gao
Haowen Luo
Pu Wu
Han Gao
Xuntian Zheng
Manya Li
Zhou Liu
Wenchi Kong
Ludong Li
Kaihui Liu
Makhsud I. Saidaminov
Lijun Zhang
Hairen Tan
机构
[1] Nanjing University,National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling
[2] Jilin University,State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering
[3] University of Victoria,Department of Chemistry
[4] Peking University,State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano
来源
Nature Communications | / 14卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The commonly-used superstrate configuration (depositing front subcell first and then depositing back subcell) in all-perovskite tandem solar cells is disadvantageous for long-term stability due to oxidizable narrow-bandgap perovskite assembled last and easily exposable to air. Here we reverse the processing order and demonstrate all-perovskite tandems in a substrate configuration (depositing back subcell first and then depositing front subcell) to bury oxidizable narrow-bandgap perovskite deep in the device stack. By using guanidinium tetrafluoroborate additive in wide-bandgap perovskite subcell, we achieve an efficiency of 25.3% for the substrate-configured all-perovskite tandem cells. The unencapsulated devices exhibit no performance degradation after storage in dry air for 1000 hours. The substrate configuration also widens the choice of flexible substrates: we achieve 24.1% and 20.3% efficient flexible all-perovskite tandem solar cells on copper-coated polyethylene naphthalene and copper metal foil, respectively. Substrate configuration offers a promising route to unleash the commercial potential of all-perovskite tandem solar cells.
引用
收藏
相关论文
共 101 条
[1]  
Tong J(2019)Carrier lifetimes of 1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells Science. 364 475-479
[2]  
Lin R(2019)Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink Nat. Energy 4 864-873
[3]  
Eperon GE(2016)Perovskite-perovskite tandem photovoltaics with optimized band gaps Science. 354 861-865
[4]  
Green MA(2021)Solar cell efficiency tables (Version 58) Prog. Photovoltaics Res. Appl. 29 657-667
[5]  
Lin R(2022)All-perovskite tandem solar cells with improved grain surface passivation Nature 603 73-78
[6]  
Li Z(2018)Cost analysis of perovskite tandem photovoltaics Joule 2 1559-1572
[7]  
Leijtens T(2018)Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors Nat. Energy 3 828-838
[8]  
Bush KA(2019)Understanding degradation mechanisms and improving stability of perovskite photovoltaics Chem. Rev. 119 3418-3451
[9]  
Prasanna R(2017)A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques Energy Environ. Sci. 10 1297-1305
[10]  
McGehee MD(2018)Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers Nat. Energy 3 1093-1100