Almost periodic compactifications of group extensions

被引:0
作者
H. D. Junghenn
P. Milnes
机构
[1] George Washington University,
[2] University of Western Ontario,undefined
来源
Czechoslovak Mathematical Journal | 2002年 / 52卷
关键词
group extension; semidirect product; topological group; semitopological semigroup; right topological semigroup; compactification; almost periodic; weakly almost periodic; strongly almost periodic;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$N$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$K$$ \end{document} be groups and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G$$ \end{document} be an extension of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$N$$ \end{document} by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$K$$ \end{document}. Given a property \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$P$$ \end{document} of group compactifications, one can ask whether there exist compactifications \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$N^\prime $$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$K^\prime $$ \end{document} of N and K such that the universal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$P$$ \end{document}-compactification of G is canonically isomorphic to an extension of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$N^\prime $$ \end{document} by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$K^\prime $$ \end{document}. We prove a theorem which gives necessary and sufficient conditions for this to occur for general properties \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$P$$ \end{document} and then apply this result to the almost periodic and weakly almost periodic compactifications of G.
引用
收藏
页码:237 / 254
页数:17
相关论文
共 13 条
  • [1] Leeuw K. d.(1961)Almost periodic functions on semigroups Acta Math 105 99-140
  • [2] Glicksberg I.(1981)Semigroup compactifications of semidirect products Trans. Amer. Math. Soc 265 393-404
  • [3] Junghenn H. D.(1999)Distal compactifications of group extensions Rocky Mountain Math. J 29 209-227
  • [4] Lerner B.(1972)On the Bohr compactification of a transformation group Math. Z 127 167-178
  • [5] Junghenn H. D.(1994)Compactifications of locally compact groups and quotients Math. Proc. Camb. Phil. Soc 116 451-463
  • [6] Milnes P.(1981)Almost periodic compactifications of direct and semidirect products Coll. Math 44 125-136
  • [7] Landstad M.(1981)-algebras associated with irrational rotation algebras Pacific J. Math 93 415-429
  • [8] Lau A. T.(1926)Ñber die Erweiterung von Gruppen I Monatsh. Math. Phys 34 165-180
  • [9] Milnes P.(undefined)undefined undefined undefined undefined-undefined
  • [10] Pym J. S.(undefined)undefined undefined undefined undefined-undefined