Effects of Saline-Alkaline Stress on Seed Germination and Seedling Growth of Sorghum bicolor (L.) Moench

被引:0
作者
Yanyun Zhao
Zhaohua Lu
Lei He
机构
[1] School of Chemical & Environmental Engineering,Institute of Restoration Ecology
[2] China University of Mining & Technology,Shandong Provincial Key Laboratory of Eco
[3] Binzhou University,Environmental Science for Yellow River Delta
[4] Zhejiang University,undefined
来源
Applied Biochemistry and Biotechnology | 2014年 / 173卷
关键词
Sweet sorghum (; (L.) Moench); Mixed saline-alkaline stress; Seed germination; Seedling growth; Activity of protective enzyme;
D O I
暂无
中图分类号
学科分类号
摘要
In order to study the adaptation ability of sweet sorghum (Sorghum bicolor L. Moench) in the Yellow River Delta, the sweet sorghum variety Mart was used in this study to determine the roles of different saline-alkaline ratio stress treatment during seed germination to seedling stage. The results showed that Na+ concentration had a significant impact on the seed germination, seedling growth, and plant survival of sweet sorghum. Increasing Na+ concentration led to a decline in germination rate, final germination percentage, survival percentage, plant height, and dry weight per plant, a prolonged mean time of germination, as well as loss of improvement effect of low-Na+ concentration. The interaction effect of Na+ concentration and pH on the mean time of germination and germination rate was not significant (p < 0.05). However, under the condition of low-Na+ concentration (100 mM), high pH reduced the mean time of germination and increased the germination rate, without decline in final germination percentage and survival percentage. Therefore, at least in the duration of seed germination to the harvest period in the research, the sweet sorghum was resistant to the pH stress (≥9.04) when the Na+ concentration was below 100 mM. When suffered from the saline-alkaline stress, the seedling of sweet sorghum was characterized by ecological adaptive features, such as decreased stem ratio and chlorophyll b content in leaves and increased root ratio and chlorophyll a content, in order to maintain the uptakes of water and nutrient, and carbon assimilation. When the stress intensified, the lipid oxidation products, e.g., malondialdehyde (MDA), increased in sweet sorghum seedlings. However, the increasing of soluble protein content and antioxidant enzyme activity (superoxide dismutase (SOD), guaiacol peroxidase (POD), and gatalase (CAT)) was only founded in neutral low-Na+ concentration treatment (A1), which indicated that high-salt concentration and pH all elicited harmful effects and limited the self-healing ability of sweet sorghum seedlings. In all, in order to grow sweet sorghum in the saline-alkaline soils of the Yellow River Delta, the salt concentration and pH value of the soil must be taken into consideration, and seeding density should be increased and supported by appropriate irrigation measures to reduce saline-alkaline stress so as to ensure the survival and growth of sweet sorghum seedlings.
引用
收藏
页码:1680 / 1691
页数:11
相关论文
共 148 条
  • [1] Ali Y(2004)Effects of salinity on chlorophyII concentration, leaf area, yield and yield components of rice genotypes grown under saline environment International Journal of Environmental Science & Technology 1 221-225
  • [2] Aslam Z(2011)Influence of salt stress on growth and biochemical parameters of citrus rootstocks Pakistan Journal of Botany 43 2135-2141
  • [3] Ashraf MY(2013)Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower ( Applied Biochemistry and Biotechnology 170 980-987
  • [4] Tahir GR(2010) L.) lines differing in salt tolerance Photosynthetica 48 127-134
  • [5] Balal RM(2007)Photosynthesis, chlorophyll fluorescence, inorganic ionand organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress Plant and Soil 294 263-276
  • [6] Ashraf MY(2011)Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions Photosynthetica 49 275-284
  • [7] Khan MM(2010)Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of South African Journal of Botany 76 380-387
  • [8] Jaskani MJ(2010) seedlings African Journal of Agricultural Research 5 408-415
  • [9] Ashfaq M(2013)Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of ahalophyte Applied Biochemistry and Biotechnology 170 257-272
  • [10] Saadia M(2013) (Poaceae) Advance Journal of Food Science and Technology 5 197-205