A deep learning-based technique for the diagnosis of epidural spinal cord compression on thoracolumbar CT

被引:0
作者
James Thomas Patrick Decourcy Hallinan
Lei Zhu
Hui Wen Natalie Tan
Si Jian Hui
Xinyi Lim
Bryan Wei Loong Ong
Han Yang Ong
Sterling Ellis Eide
Amanda J. L. Cheng
Shuliang Ge
Tricia Kuah
Shi Wei Desmond Lim
Xi Zhen Low
Ee Chin Teo
Qai Ven Yap
Yiong Huak Chan
Naresh Kumar
Balamurugan A. Vellayappan
Beng Chin Ooi
Swee Tian Quek
Andrew Makmur
Jiong Hao Tan
机构
[1] National University Hospital,Department of Diagnostic Imaging
[2] Yong Loo Lin School of Medicine,Department of Diagnostic Radiology
[3] National University of Singapore,Department of Computer Science, School of Computing
[4] National University of Singapore,Department of Orthopaedic Surgery
[5] University Spine Centre,Orthopaedic Centre
[6] National University Health System,Department of Radiation Oncology
[7] Alexandra Hospital,undefined
[8] Biostatistics Unit,undefined
[9] Yong Loo Lin School of Medicine,undefined
[10] National University Cancer Institute Singapore,undefined
[11] National University Hospital,undefined
来源
European Spine Journal | 2023年 / 32卷
关键词
Epidural spinal cord compression; Metastatic epidural spinal cord compression; Deep learning; Artificial intelligence; CT; MRI;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3815 / 3824
页数:9
相关论文
共 235 条
[1]  
Van den Brande R(2022)Epidemiology of spinal metastases, metastatic epidural spinal cord compression and pathologic vertebral compression fractures in patients with solid tumors: a systematic review J Bone Oncol 35 100446-365
[2]  
Cornips EM(2022)State-of-the-art imaging techniques in metastatic spinal cord compression Cancers (Basel) 14 3289-2081
[3]  
Peeters M(2015)Progressive computed tomography (CT) appearances preceding malignant spinal cord compression (MSCC) in men with castration-resistant prostate cancer Clin Radiol 70 359-2148
[4]  
Ost P(2022)Diagnostic accuracy of CT for metastatic epidural spinal cord compression Cancers (Basel) 14 4231-138
[5]  
Billiet C(2022)Artificial intelligence in spine care: current applications and future utility Eur Spine J 31 2057-166
[6]  
Van de Kelft E(2022)External validation of the deep learning system “SpineNet” for grading radiological features of degeneration on MRIs of the lumbar spine Eur Spine J 31 2137-2030
[7]  
Kuah T(2021)Deep learning model for automated detection and classification of central canal, lateral recess, and neural foraminal stenosis at lumbar spine MRI Radiology 300 130-2103
[8]  
Vellayappan BA(2022)Improved productivity using deep learning-assisted reporting for lumbar spine MRI Radiology 305 160-9619
[9]  
Makmur A(2022)Application of artificial intelligence methods for imaging of spinal metastasis Cancers (Basel) 14 4025-900
[10]  
Nair S(2022)A deep learning-based method for the diagnosis of vertebral fractures on spine MRI: retrospective training and validation of ResNet Eur Spine J 31 2022-577