Topological phase of optical vortices in few-mode fibers

被引:0
|
作者
A. V. Volyar
V. Z. Zhilaitis
T. A. Fadeeva
V. G. Shvedov
机构
[1] Simferopol State University,
来源
Technical Physics Letters | 1998年 / 24卷
关键词
Vortex; Angular Momentum; Gaussian Beam; Flow Line; Topological Charge;
D O I
暂无
中图分类号
学科分类号
摘要
It has been found that as they propagate, the natural optical vortices of a few-mode parabolic fiber acquire a topological phase in addition to the dynamic phase. The magnitude of this phase is numerically equal to the polarization correction to the propagation constant of the CV and IV vortices. An analysis revealed that this phase is a new type of optical manifestation of the topological Berry phase. The already known Pancharatnam and Rytov-Vladimirski\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}$$ \end{document}. phases are associated with changes in the magnitude and direction of the angular momentum flow of the wave. In the fields of natural vortices of a few-mode fiber all the explicit parameters of the wave remain unchanged during propagation. However, the direction of the momentum density vector of the vortex undergoes cyclic variations along the trajectory of the energy flow line. These cyclic variations of the implicit vortex parameter are responsible for the new type of topological phase. Unlike the study made by van Enk (Ref. 6), where the topological phase was only related to the angular momentum for the lowest-order Gaussian beams (l=±1), this topological phase describes guided vortices with any values l of the topological charge. The results can be used to estimate the stability of CV and IV vortices relative to external perturbing influences on the optical fiber.
引用
收藏
页码:322 / 325
页数:3
相关论文
共 50 条
  • [1] Topological phase of optical vortices in few-mode fibers
    Volyar, AV
    Zhilaitis, VZ
    Fadeeva, TA
    Shvedov, VG
    TECHNICAL PHYSICS LETTERS, 1998, 24 (04) : 322 - 325
  • [2] A few-mode optical fiber retaining optical vortices
    Volyar, AV
    Fadeeva, TA
    TECHNICAL PHYSICS LETTERS, 2002, 28 (02) : 102 - 104
  • [3] A few-mode optical fiber retaining optical vortices
    A. V. Volyar
    T. A. Fadeeva
    Technical Physics Letters, 2002, 28 : 102 - 104
  • [4] Optical vortices in low-mode fibers: III. Dislocation reactions, phase transitions, and topological birefringence
    A. V. Volyar
    V. Z. Zhilaitis
    T. A. Fadeeva
    Optics and Spectroscopy, 2000, 88 : 397 - 405
  • [5] Angular momentum of the fields of a few-mode fiber. III. Optical Magnus effect, Berry phase, and topological birefringence
    A. V. Volyar
    T. A. Fadeeva
    Technical Physics Letters, 1997, 23 : 927 - 930
  • [6] Topological birefringence of optical vortices in a low-mode fiber
    Fadeyeva, TA
    Shvedov, VG
    Volyar, AV
    Zhilaytis, VZ
    INTERNATIONAL CONFERENCE ON SINGULAR OPTICS, 1998, 3487 : 71 - 77
  • [7] Combined optical vortices in low-mode optical fibers
    Fadeyeva, TA
    Volyar, AV
    Zhilaitis, VZ
    Soskin, MS
    FOURTH INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 1999, 3904 : 124 - 130
  • [8] Angular momentum of the fields of a few-mode fiber: I. A perturbed optical vortex
    A. V. Volyar
    T. A. Fadeeva
    Technical Physics Letters, 1997, 23 : 848 - 851
  • [9] Dynamics of field dislocations and disclinations in a few-mode fiber .4. Formation of an optical vortex
    Volyar, AV
    Fadeeva, TA
    Reshitova, KM
    TECHNICAL PHYSICS LETTERS, 1997, 23 (03) : 198 - 200
  • [10] Measuring the topological charge of optical vortices with a twisting phase
    Shen, Donghui
    Zhao, Daomu
    OPTICS LETTERS, 2019, 44 (09) : 2334 - 2337