Topological phase of optical vortices in few-mode fibers

被引:0
|
作者
A. V. Volyar
V. Z. Zhilaitis
T. A. Fadeeva
V. G. Shvedov
机构
[1] Simferopol State University,
来源
Technical Physics Letters | 1998年 / 24卷
关键词
Vortex; Angular Momentum; Gaussian Beam; Flow Line; Topological Charge;
D O I
暂无
中图分类号
学科分类号
摘要
It has been found that as they propagate, the natural optical vortices of a few-mode parabolic fiber acquire a topological phase in addition to the dynamic phase. The magnitude of this phase is numerically equal to the polarization correction to the propagation constant of the CV and IV vortices. An analysis revealed that this phase is a new type of optical manifestation of the topological Berry phase. The already known Pancharatnam and Rytov-Vladimirski\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}$$ \end{document}. phases are associated with changes in the magnitude and direction of the angular momentum flow of the wave. In the fields of natural vortices of a few-mode fiber all the explicit parameters of the wave remain unchanged during propagation. However, the direction of the momentum density vector of the vortex undergoes cyclic variations along the trajectory of the energy flow line. These cyclic variations of the implicit vortex parameter are responsible for the new type of topological phase. Unlike the study made by van Enk (Ref. 6), where the topological phase was only related to the angular momentum for the lowest-order Gaussian beams (l=±1), this topological phase describes guided vortices with any values l of the topological charge. The results can be used to estimate the stability of CV and IV vortices relative to external perturbing influences on the optical fiber.
引用
收藏
页码:322 / 325
页数:3
相关论文
共 50 条
  • [1] Topological phase of optical vortices in few-mode fibers
    Volyar, AV
    Zhilaitis, VZ
    Fadeeva, TA
    Shvedov, VG
    TECHNICAL PHYSICS LETTERS, 1998, 24 (04) : 322 - 325
  • [2] Optical vortices and topological phase in strongly anisotropic coiled few-mode optical fibers
    Alexeyev, Constantine N.
    Lapin, Boris A.
    Yavorsky, Maxim A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2007, 24 (10) : 2666 - 2675
  • [3] A few-mode optical fiber retaining optical vortices
    A. V. Volyar
    T. A. Fadeeva
    Technical Physics Letters, 2002, 28 : 102 - 104
  • [4] A few-mode optical fiber retaining optical vortices
    Volyar, AV
    Fadeeva, TA
    TECHNICAL PHYSICS LETTERS, 2002, 28 (02) : 102 - 104
  • [5] Few-mode elastomeric optical fibers
    Llera, Miguel
    Flahaut, Frederic
    Bergerat, Sylvain
    Benoit, Justin
    Luethi, Rowan
    Mathez, Frederic
    Le Floch, Sebastien
    Salvade, Yves
    OPTICAL MATERIALS EXPRESS, 2021, 11 (07) : 2288 - 2299
  • [6] Optical Communication over Few-Mode Fibers
    Ryf, Roland
    2014 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES, 2014, : 154 - 155
  • [7] Rayleigh scattering in few-mode optical fibers
    Zhen Wang
    Hao Wu
    Xiaolong Hu
    Ningbo Zhao
    Qi Mo
    Guifang Li
    Scientific Reports, 6
  • [8] The Role of Anisotropy in Few-Mode Optical Fibers
    Palmieri, Luca
    Schenato, Luca
    Galtarossa, Andrea
    2013 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC), 2013,
  • [9] Rayleigh scattering in few-mode optical fibers
    Wang, Zhen
    Wu, Hao
    Hu, Xiaolong
    Zhao, Ningbo
    Mo, Qi
    Li, Guifang
    SCIENTIFIC REPORTS, 2016, 6
  • [10] Rayleigh Backscattering in Few-Mode Optical Fibers
    Wang, Zhen
    Wu, Hao
    Hu, Xiaolong
    Zhao, Ningbo
    Yang, Zhiqun
    Tan, Fengze
    Zhao, Jian
    Mo, Qi
    Li, Guifang
    2016 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2016,