A General Stochastic Maximum Principle for SDEs of Mean-field Type

被引:1
作者
Rainer Buckdahn
Boualem Djehiche
Juan Li
机构
[1] Université de Bretagne Occidentale,Département de Mathématiques
[2] Royal Institute of Technology,Department of Mathematics
[3] Shandong University at Weihai,School of Mathematics and Statistics
来源
Applied Mathematics & Optimization | 2011年 / 64卷
关键词
Stochastic control; Maximum principle; Mean-field SDE; McKean-Vlasov equation; Time inconsistent control;
D O I
暂无
中图分类号
学科分类号
摘要
We study the optimal control for stochastic differential equations (SDEs) of mean-field type, in which the coefficients depend on the state of the solution process as well as of its expected value. Moreover, the cost functional is also of mean-field type. This makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. For a general action space a Peng’s-type stochastic maximum principle (Peng, S.: SIAM J. Control Optim. 2(4), 966–979, 1990) is derived, specifying the necessary conditions for optimality. This maximum principle differs from the classical one in the sense that here the first order adjoint equation turns out to be a linear mean-field backward SDE, while the second order adjoint equation remains the same as in Peng’s stochastic maximum principle.
引用
收藏
页码:197 / 216
页数:19
相关论文
共 25 条
[1]  
Ahmed N.U.(2001)Controlled McKean-Vlasov equations Commun. Appl. Anal. 5 183-206
[2]  
Ding X.(2010)A maximum principle for SDE’s of mean-field type Appl. Math. Optim. 63 341-356
[3]  
Andersson D.(1978)An introductory approach to duality in optimal stochastic control SIAM Rev. 20 62-78
[4]  
Djehiche B.(2009)Mean-field backward stochastic differential equations. A limit approach Ann. Probab. 37 1524-1565
[5]  
Bismut J.M.(2009)Mean-field backward stochastic differential equations and related partial differential equations Stoch. Process. Appl. 119 3133-3154
[6]  
Buckdahn R.(1995)The stochastic maximum principle for linear, convex optimal control with random coefficients SIAM J. Control Optim. 33 590-624
[7]  
Djehiche B.(1990)The optimal control of diffusions Appl. Math. Optim. 22 229-240
[8]  
Li J.(1965)On the stochastic maximum principle: fixed time of control J. Math. Anal. Appl. 11 78-92
[9]  
Peng S.(1972)Necessary conditions for continuous parameter stochastic optimization problems SIAM J. Control Optim. 10 550-565
[10]  
Buckdahn R.(2008)Nonlinear SDEs driven by Lèvy processes and related PDEs ALEA Lat. Am. J. Probab. Math. Stat. 4 1-29