A non-parametric depth modification model for registration between color and depth images

被引:0
|
作者
Li Peng
Yanduo Zhang
Huabing Zhou
Junjun Jiang
Jiayi Ma
机构
[1] Huazhong University of Science and Technology,Hubei Key Laboratory of Intelligent Robot
[2] Wuhan Institute of Technology,School of Computer Science and Technology
[3] Hubei Radio and TV University,Electronic Information School
[4] Harbin Institute of Technology,undefined
[5] Wuhan University,undefined
来源
Multidimensional Systems and Signal Processing | 2019年 / 30卷
关键词
Depth accuracy; Correspondence; Kinect sensor; Non-parametric model;
D O I
暂无
中图分类号
学科分类号
摘要
Despite its most popularity among all depth cameras in the computer vision applications, the Microsoft Kinect sensor suffers from low depth accuracy. In this work we propose a novel non-parametric depth modification model to improve the depth accuracy of the Kinect sensor by iteratively registering depth images and color images. In particular, we first establish a coarse correspondence based on the feature descriptor of the canny edge at each iteration, and estimate the fine correspondence using an L2E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2E$$\end{document} algorithm. We utilize the non-parametric Gaussian mixture model to replace the Gaussian single model and build the regularization term to constrain the correlations between functions. Then, based on the correspondence results, the depth data are corrected and optimized. Extensive experiments have been performed to verify the effectiveness of the proposed approach, and the results have demonstrated that our method is able to greatly enhance the depth accuracy of the Kinect sensor compared with baseline methods.
引用
收藏
页码:1129 / 1148
页数:19
相关论文
共 50 条
  • [1] A non-parametric depth modification model for registration between color and depth images
    Peng, Li
    Zhang, Yanduo
    Zhou, Huabing
    Jiang, Junjun
    Ma, Jiayi
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2019, 30 (03) : 1129 - 1148
  • [2] A Parametric Model for Describing the Correlation Between Single Color Images and Depth Maps
    Wang, Yangang
    Wang, Ruiping
    Dai, Qionghai
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (07) : 800 - 803
  • [3] Non-parametric calibration for depth sensors
    Di Cicco, Maurilio
    Iocchi, Luca
    Grisetti, Giorgio
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2015, 74 : 309 - 317
  • [4] NON-PARAMETRIC DEPTH CALIBRATION OF A TOF CAMERA
    Belhedi, A.
    Bourgeois, S.
    Gay-Bellile, V.
    Sayd, P.
    Bartoli, A.
    Hamrouni, K.
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 549 - 552
  • [5] Non-Parametric Blur Map Regression for Depth of Field Extension
    D'Andres, Laurent
    Salvador, Jordi
    Kochale, Axel
    Suesstrunk, Sabine
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (04) : 1660 - 1673
  • [6] Non-parametric Depth Distribution Modelling based Depth Inference for Multi-view Stereo
    Yang, Jiayu
    Alvarez, Jose M.
    Liu, Miaomiao
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8616 - 8624
  • [7] Depth Extraction from Video Using Non-parametric Sampling
    Karsch, Kevin
    Liu, Ce
    Kang, Sing Bing
    COMPUTER VISION - ECCV 2012, PT V, 2012, 7576 : 775 - 788
  • [8] Comparing non-parametric regression lines via regression depth
    Wilcox, Rand R.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (04) : 379 - 387
  • [9] Non-parametric depth-based tests for the multivariate location problem
    Dehghan, Sakineh
    Faridrohani, Mohammad Reza
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2021, 63 (02) : 309 - 330
  • [10] Robust non-parametric tests for imaging data based on data depth
    Lopez-Pintado, Sara
    Wrobel, Julia
    STAT, 2017, 6 (01): : 405 - 419