Fault size diagnosis of rolling element bearing using artificial neural network and dimension theory

被引:0
|
作者
Surajkumar G. Kumbhar
R. G. Desavale
Nagaraj V. Dharwadkar
机构
[1] Shivaji University,Automobile Engineering Department, Rajarambapu Institute of Technology, Rajaramnagar, Sakharale
[2] Shivaji University,Sangli
[3] Shivaji University,Mechanical Engineering Department, Rajarambapu Institute of Technology, Rajaramnagar, Sakharale
来源
Neural Computing and Applications | 2021年 / 33卷
关键词
Fault diagnosis; Fault size classification; Artificial neural network; Dimension analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Failure of roller bearings can cause downtime or a complete shutdown of rotating machines. Therefore, a well-timed detection of bearing defects must be performed. Modern condition monitoring demands simple but effective bearing failure diagnosis by integrating dynamic models with intelligence techniques. This paper presents an integration of Dimensional Analysis (DA) and Artificial Neural Network (ANN) to diagnose the size of the bearing faults. The vibration responses of artificially damaged bearings using Electrode Discharge Machining are collected using Fast Fourier Techniques on a developed rotor-bearing test rig. Two-performance indicators, actual error, and performance of error are used to evaluate the accuracy of models. The simplicity of the DA model and the performance of the ANN model predicting with 5.49% actual error and 97.79 performance of error band enhanced the accuracy of diagnosis compared to the experimental results. Moreover, ANN has shown good performance over experimental results and DA.
引用
收藏
页码:16079 / 16093
页数:14
相关论文
共 50 条
  • [31] An adaptive deep convolutional neural network for rolling bearing fault diagnosis
    Wang Fuan
    Jiang Hongkai
    Shao Haidong
    Duan Wenjing
    Wu Shuaipeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (09)
  • [32] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713
  • [33] Experimental-Based Fault Diagnosis of Rolling Bearings Using Artificial Neural Network
    Kanai, R. A.
    Desavale, R. G.
    Chavan, S. P.
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2016, 138 (03):
  • [34] Wavelet neural network and its application in fault diagnosis of rolling bearing
    Wang, GF
    Wang, TY
    ICMIT 2005: INFORMATION SYSTEMS AND SIGNAL PROCESSING, 2005, 6041
  • [35] Rolling Bearing Fault Diagnosis Based on Graph Convolution Neural Network
    Zhang, Yin
    Li, Hui
    INTELLIGENT COMPUTING THEORIES AND APPLICATION (ICIC 2022), PT I, 2022, 13393 : 195 - 207
  • [36] Application of Wavelet Analysis and Neural Network in Fault Diagnosis of Rolling Bearing
    Li Xinli
    Yao Wanye
    Yang Xiao
    Zhou Qingjie
    PROCEEDINGS OF THE 2015 JOINT INTERNATIONAL MECHANICAL, ELECTRONIC AND INFORMATION TECHNOLOGY CONFERENCE (JIMET 2015), 2015, 10 : 1 - 6
  • [37] Rolling Bearing Fault Diagnosis Based on GWVD and Convolutional Neural Network
    Lv, Xiaoxuan
    Li, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 514 - 523
  • [38] Fault Diagnosis Method of Rolling Bearing Based on BP Neural Network
    Huang Zhonghua
    Xie Ya
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 647 - 649
  • [39] Rolling-Element Bearing Fault Diagnosis Using Improved LeNet-5 Network
    Wan, Lanjun
    Chen, Yiwei
    Li, Hongyang
    Li, Changyun
    SENSORS, 2020, 20 (06)
  • [40] Development of Artificial Neural Network Based Fault Diagnosis of Induction Motor Bearing
    Mahamad, Abd Kadir
    Hiyama, Takashi
    2008 IEEE 2ND INTERNATIONAL POWER AND ENERGY CONFERENCE: PECON, VOLS 1-3, 2008, : 1387 - 1392