A Proposed Sentiment Analysis Deep Learning Algorithm for Analyzing COVID-19 Tweets

被引:0
|
作者
Harleen Kaur
Shafqat Ul Ahsaan
Bhavya Alankar
Victor Chang
机构
[1] Jamia Hamdard,Department of Computer Science and Engineering, School of Engineering Sciences and Technology
[2] Teesside University,Artificial Intelligence and Information Systems Research Group, School of Computing, Engineering and Digital Technologies
来源
Information Systems Frontiers | 2021年 / 23卷
关键词
COVID-19; Sentiment analysis; Twitter; Recurrent neural network (RCN); Heterogeneous Euclidean overlap metric (H-EOM); Hybrid heterogeneous support vector machine (H-SVM);
D O I
暂无
中图分类号
学科分类号
摘要
With the rise in cases of COVID-19, a bizarre situation of pressure was mounted on each country to make arrangements to control the population and utilize the available resources appropriately. The swiftly rising of positive cases globally created panic, anxiety and depression among people. The effect of this deadly disease was found to be directly proportional to the physical and mental health of the population. As of 28 October 2020, more than 40 million people are tested positive and more than 1 million deaths have been recorded. The most dominant tool that disturbed human life during this time is social media. The tweets regarding COVID-19, whether it was a number of positive cases or deaths, induced a wave of fear and anxiety among people living in different parts of the world. Nobody can deny the truth that social media is everywhere and everybody is connected with it directly or indirectly. This offers an opportunity for researchers and data scientists to access the data for academic and research use. The social media data contains many data that relate to real-life events like COVID-19. In this paper, an analysis of Twitter data has been done through the R programming language. We have collected the Twitter data based on hashtag keywords, including COVID-19, coronavirus, deaths, new case, recovered. In this study, we have designed an algorithm called Hybrid Heterogeneous Support Vector Machine (H-SVM) and performed the sentiment classification and classified them positive, negative and neutral sentiment scores. We have also compared the performance of the proposed algorithm on certain parameters like precision, recall, F1 score and accuracy with Recurrent Neural Network (RNN) and Support Vector Machine (SVM).
引用
收藏
页码:1417 / 1429
页数:12
相关论文
共 50 条
  • [21] Sentiment Analysis of Pandemic Tweets with COVID-19 as a Prototype
    Almutiri, Mashail
    Alghamdi, Mona
    Elazhary, Hanan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (04) : 510 - 518
  • [22] Analysis and Prediction of User Sentiment on COVID-19 Pandemic Using Tweets
    Yeasmin, Nilufa
    Mahbub, Nosin Ibna
    Baowaly, Mrinal Kanti
    Singh, Bikash Chandra
    Alom, Zulfikar
    Aung, Zeyar
    Azim, Mohammad Abdul
    BIG DATA AND COGNITIVE COMPUTING, 2022, 6 (02)
  • [23] A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets
    Basiri, Mohammad Ehsan
    Nemati, Shahla
    Abdar, Moloud
    Asadi, Somayeh
    Acharrya, U. Rajendra
    KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [24] BERT-deep CNN: state of the art for sentiment analysis of COVID-19 tweets
    Javad Hassannataj Joloudari
    Sadiq Hussain
    Mohammad Ali Nematollahi
    Rouhollah Bagheri
    Fatemeh Fazl
    Roohallah Alizadehsani
    Reza Lashgari
    Ashis Talukder
    Social Network Analysis and Mining, 13
  • [25] BERT-deep CNN: state of the art for sentiment analysis of COVID-19 tweets
    Joloudari, Javad Hassannataj
    Hussain, Sadiq
    Nematollahi, Mohammad Ali
    Bagheri, Rouhollah
    Fazl, Fatemeh
    Alizadehsani, Roohallah
    Lashgari, Reza
    Talukder, Ashis
    SOCIAL NETWORK ANALYSIS AND MINING, 2023, 13 (01)
  • [26] Sentiment Analysis of COVID-19 Tweets Using Deep Learning and Lexicon-Based Approaches
    Ainapure, Bharati Sanjay
    Pise, Reshma Nitin
    Reddy, Prathiba
    Appasani, Bhargav
    Srinivasulu, Avireni
    Khan, Mohammad S. S.
    Bizon, Nicu
    SUSTAINABILITY, 2023, 15 (03)
  • [27] Application of bidirectional LSTM deep learning technique for sentiment analysis of COVID-19 tweets: post-COVID vaccination era
    Oluwatobi Noah Akande
    Morolake Oladayo Lawrence
    Peter Ogedebe
    Journal of Electrical Systems and Information Technology, 10 (1)
  • [28] Sentiment Analysis of Arabic Tweets Regarding Distance Learning in Saudi Arabia during the COVID-19 Pandemic
    Aljabri, Malak
    Chrouf, Sara Mhd. Bachar
    Alzahrani, Norah A.
    Alghamdi, Leena
    Alfehaid, Reem
    Alqarawi, Reem
    Alhuthayfi, Jawaher
    Alduhailan, Nouf
    SENSORS, 2021, 21 (16)
  • [29] Sentiment Analysis of Tweets on Online Education during COVID-19
    Yildirim, Elif
    Yazgan, Harun
    Ozbek, Onur
    Gunay, Ahmet Can
    Kocacinar, Busra
    Sengel, Oznur
    Akbulut, Fatma Patlar
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT I, 2023, 675 : 240 - 251
  • [30] Sentiment analysis tracking of COVID-19 vaccine through tweets
    Sarirete, Akila
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 14 (11) : 14661 - 14669