Automatic method for classification of groundnut diseases using deep convolutional neural network

被引:1
|
作者
M. P. Vaishnnave
K. Suganya Devi
P. Ganeshkumar
机构
[1] University College of Engineering,Department of Information Technology
[2] National Institute of Technology Silchar,Department of CSE
[3] Anna University Regional Campus,Department of IT
来源
Soft Computing | 2020年 / 24卷
关键词
Agriculture; Groundnut leaf disease; Convolutional neural network; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Groundnut is one of the most important and popular oilseed foods in the agricultural field, and its botanical name is Arachis hypogaea L. Approximately, the pod of mature groundnut contains 1–5 seeds with 57% of oil and 25% of protein content. The oil obtained from the groundnut is widely used for cooking and losing body weight, and its fats are widely used for making soaps. The groundnut cultivation is affected by different kinds of diseases such as fungi, viruses, and bacteria. Hence, these diseases affect the leaf, root and stem of the groundnut plant and it leads to heavy loss in yield. Moreover, the enlarger number of diseases affects the leaf and root-like Alternaria, Pestalotiopsis, Bud necrosis, tikka, Phyllosticta, Rust, Pepper spot, Choanephora, early and late leaf spot. To overcome these issues, we introduce an efficient method of deep convolutional neural network (DCNN) because it automatically detects the important features without any human supervision. The DCNN procedure can deeply detect plant disease by using a deep learning process. Moreover, the DCNN training and testing process demonstrate an accurate groundnut disease determination and classification result. The number of groundnut leaf disease images is chosen from the plant village dataset, and it is used for the training and testing process. The stochastic gradient decent momentum method is used for dataset training, and it has shown the better performance of proposed DCNN. From the comparison analysis, the 6th combined layer of proposed DCNN delivers a 95.28% accuracy value. Ultimately, the groundnut disease classification with its overall performance of proposed DCNN provides 99.88% accuracy.
引用
收藏
页码:16347 / 16360
页数:13
相关论文
共 50 条
  • [21] Automatic classification of white blood cells using deep features based convolutional neural network
    Meenakshi, A.
    Ruth, J. Anitha
    Kanagavalli, V. R.
    Uma, R.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (21) : 30121 - 30142
  • [22] Automatic classification of white blood cells using deep features based convolutional neural network
    A. Meenakshi
    J. Anitha Ruth
    V. R. Kanagavalli
    R. Uma
    Multimedia Tools and Applications, 2022, 81 : 30121 - 30142
  • [23] Robust Automatic Modulation Classification Using Convolutional Deep Neural Network Based on Scalogram Information
    Abdulkarem, Ahmed Mohammed
    Abedi, Firas
    Ghanimi, Hayder M. A.
    Kumar, Sachin
    Al-Azzawi, Waleed Khalid
    Abbas, Ali Hashim
    Abosinnee, Ali S.
    Almaameri, Ihab Mahdi
    Alkhayyat, Ahmed
    COMPUTERS, 2022, 11 (11)
  • [24] Automatic Classification of Leukocytes Using Deep Neural Network
    Yu, Wei
    Chang, Jing
    Yang, Cheng
    Zhang, Limin
    Shen, Han
    Xia, Yongquan
    Sha, Jin
    2017 IEEE 12TH INTERNATIONAL CONFERENCE ON ASIC (ASICON), 2017, : 1041 - 1044
  • [25] Explainable Deep Convolutional Neural Network for Valvular Heart Diseases Classification Using PCG Signals
    Bhardwaj, Anandita
    Singh, Sandeep
    Joshi, Deepak
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [26] Deep Gaussian convolutional neural network model in classification of cassava diseases using spectral data
    Emmanuel Ahishakiye
    Waweru Mwangi
    Petronilla Muriithi
    Fredrick Kanobe
    Godliver Owomugisha
    Danison Taremwa
    Lenard Nkalubo
    The Journal of Supercomputing, 2024, 80 : 463 - 485
  • [27] Classification of Rice Diseases using Convolutional Neural Network Models
    Yakkundimath R.
    Saunshi G.
    Anami B.
    Palaiah S.
    Journal of The Institution of Engineers (India): Series B, 2022, 103 (04) : 1047 - 1059
  • [28] Deep Gaussian convolutional neural network model in classification of cassava diseases using spectral data
    Ahishakiye, Emmanuel
    Mwangi, Waweru
    Muriithi, Petronilla
    Kanobe, Fredrick
    Owomugisha, Godliver
    Taremwa, Danison
    Nkalubo, Lenard
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (01): : 463 - 485
  • [29] Dermatologist-level classification of malignant lip diseases using a deep convolutional neural network
    Cho, S. I.
    Sun, S.
    Mun, J. -H.
    Kim, C.
    Kim, S. Y.
    Cho, S.
    Youn, S. W.
    Kim, H. C.
    Chung, J. H.
    BRITISH JOURNAL OF DERMATOLOGY, 2020, 182 (06) : 1388 - 1394
  • [30] A gender classification method for Chinese mitten crab using deep convolutional neural network
    Yanhai Cui
    Tianhong Pan
    Shan Chen
    Xiaobo Zou
    Multimedia Tools and Applications, 2020, 79 : 7669 - 7684