Numerical approach for nanofluid transportation due to electric force in a porous enclosure

被引:0
|
作者
Zhixiong Li
M. Ramzan
Ahmad Shafee
S. Saleem
Qasem M. Al-Mdallal
Ali J. Chamkha
机构
[1] Ocean University of China,School of Engineering
[2] University of Wollongong,School of Mechanical, Materials, Mechatronic and Biomedical Engineering
[3] Bahria University,Department of Computer Science
[4] Sejong University,Department of Mechanical Engineering
[5] College of Technological Studies,Public Authority of Applied Education and Training, Applied Science Department
[6] King Khalid University,Department of Mathematics, College of Science
[7] United Arab Emirates University,Department of Mathematical Sciences
[8] Prince Mohammad Bin Fahd University,Mechanical Engineering Department, Prince Sultan Endowment for Energy and Environment
[9] American University of Ras Al Khaimah,RAK Research and Innovation Center
[10] University Tun Hussein Onn Malaysia,FAST
来源
Microsystem Technologies | 2019年 / 25卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In current attempt, nanoparticle Electrohydrodynamic transportation has been modeled numerically via control volume based finite element method. Mixture of Fe3O4 and Ethylene glycol is elected. Impact of radiation parameter (Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text{(}Rd\text{)} $$\end{document}, voltage supplied (Δφ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text{(}\Delta \varphi \text{)} $$\end{document}, nanoparticle concentration, Permeability and Reynolds number have been displayed. Results display that permeability and thermal radiation can improve temperature gradient.
引用
收藏
页码:2501 / 2514
页数:13
相关论文
共 50 条