Catalysis of Ground State cis→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow$$\end{document}trans Isomerization of Bacteriorhodopsin’s Retinal Chromophore by a Hydrogen-Bond Network

被引:0
|
作者
Nadia Elghobashi-Meinhardt
Prasad Phatak
Ana-Nicoleta Bondar
Marcus Elstner
Jeremy C. Smith
机构
[1] Freie Universität Berlin,Department of Physical and Theoretical Chemistry, Theoretical Molecular Biophysics, Institute for Chemistry und Biochemistry
[2] Freie Universität Berlin,Department of Physics, Theoretical Molecular Biophysics
[3] TU Braunschweig,Institute of Physical and Theoretical Chemistry
[4] BASF SE,Department of Theoretical Chemical Biology, Institute for Physical Chemistry
[5] Karlsruhe Institut of Technology,Oak Ridge National Laboratory
[6] Center for Molecular Biophysics,Department of Biochemistry and Molecular and Cellular Biology
[7] University of Tennessee,undefined
关键词
Bacteriorhodopsin; Retinal; Isomerization; QM/MM; Energy; Calculations;
D O I
10.1007/s00232-018-0027-x
中图分类号
学科分类号
摘要
For the photocycle of the membrane protein bacteriorhodopsin to proceed efficiently, the thermal 13-cis to all-trans back-isomerization of the retinal chromophore must return the protein to its resting state on a time-scale of milliseconds. Here, we report on quantum mechanical/molecular mechanical energy calculations examining the structural and energetic determinants of the retinal cis–trans isomerization in the protein environment. The results suggest that a hydrogen-bonded network consisting of the retinal Schiff base, active site amino acid residues, and water molecules can stabilize the twisted retinal, thus reducing the intrinsic energy cost of the cis–trans thermal isomerization barrier.
引用
收藏
页码:315 / 327
页数:12
相关论文
共 15 条