Symptom-based scoring technique by machine learning to predict COVID-19: a validation study

被引:0
|
作者
Amelia Nur Vidyanti
Sekar Satiti
Atitya Fithri Khairani
Aditya Rifqi Fauzi
Muhammad Hardhantyo
Herdiantri Sufriyana
Emily Chia-Yu Su
机构
[1] Faculty of Medicine,Department of Neurology
[2] Public Health and Nursing,Department of Neurology
[3] Universitas Gadjah Mada,Center for Health Policy and Management, Faculty of Medicine, Public Health and Nursing
[4] Dr. Sardjito General Hospital,Graduate Institute of Biomedical Informatics
[5] Universitas Gadjah Mada,Department of Medical Physiology
[6] Faculty of Health Science,undefined
[7] Respati University Yogyakarta,undefined
[8] College of Medical Science and Technology,undefined
[9] Taipei Medical University,undefined
[10] Faculty of Medicine,undefined
[11] Universitas Nahdlatul Ulama Surabaya,undefined
[12] Clinical Big Data Research Center,undefined
[13] Taipei Medical University Hospital,undefined
[14] Research Center for Artificial Intelligence in Medicine,undefined
[15] Taipei Medical University,undefined
来源
BMC Infectious Diseases | / 23卷
关键词
COVID-19; Clinical prediction rules; Validation study; Machine learning; Hospital referral;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Using machine learning algorithms to predict COVID-19 vaccine uptake: A year after the introduction of COVID-19 vaccines in Ghana
    Dodoo, Cornelius C.
    Hanson-Yamoah, Ebo
    Adedia, David
    Erzuah, Irene
    Yamoah, Peter
    Brobbey, Fareeda
    Cobbold, Constance
    Mensah, Josephine
    VACCINE: X, 2024, 18
  • [42] Simple Symptom-Based Prediction of COVID-19 A Single-Center Study of Outpatient Fever Clinic in Japan
    Inaba, Shinji
    Nakao, Yasuhisa
    Ikeda, Shuntaro
    Mizumoto, Yuki
    Utsunomiya, Takeshi
    Honjo, Masahiko
    Takada, Yasutsugu
    Nogami, Naoyuki
    Ishii, Eiichi
    Yamaguchi, Osamu
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (03)
  • [43] Development and Validation of a Machine Learning Approach for Automated Severity Assessment of COVID-19 Based on Clinical and Imaging Data: Retrospective Study
    Quiroz, Juan Carlos
    Feng, You-Zhen
    Cheng, Zhong-Yuan
    Rezazadegan, Dana
    Chen, Ping-Kang
    Lin, Qi-Ting
    Qian, Long
    Liu, Xiao-Fang
    Berkovsky, Shlomo
    Coiera, Enrico
    Song, Lei
    Qiu, Xiaoming
    Liu, Sidong
    Cai, Xiang-Ran
    JMIR MEDICAL INFORMATICS, 2021, 9 (02)
  • [44] Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation
    Vaid, Akhil
    Somani, Sulaiman
    Russak, Adam J.
    De Freitas, Jessica K.
    Chaudhry, Fayzan F.
    Paranjpe, Ishan
    Johnson, Kipp W.
    Lee, Samuel J.
    Miotto, Riccardo
    Richter, Felix
    Zhao, Shan
    Beckmann, Noam D.
    Naik, Nidhi
    Kia, Arash
    Timsina, Prem
    Lala, Anuradha
    Paranjpe, Manish
    Golden, Eddye
    Danieletto, Matteo
    Singh, Manbir
    Meyer, Dara
    O'Reilly, Paul F.
    Huckins, Laura
    Kovatch, Patricia
    Finkelstein, Joseph
    Freeman, Robert M.
    Argulian, Edgar
    Kasarskis, Andrew
    Percha, Bethany
    Aberg, Judith A.
    Bagiella, Emilia
    Horowitz, Carol R.
    Murphy, Barbara
    Nestler, Eric J.
    Schadt, Eric E.
    Cho, Judy H.
    Cordon-Cardo, Carlos
    Fuster, Valentin
    Charney, Dennis S.
    Reich, David L.
    Bottinger, Erwin P.
    Levin, Matthew A.
    Narula, Jagat
    Fayad, Zahi A.
    Just, Allan C.
    Charney, Alexander W.
    Nadkarni, Girish N.
    Glicksberg, Benjamin S.
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (11)
  • [45] Multidimensional Machine Learning for Assessing Parameters Associated With COVID-19 in Vietnam: Validation Study
    Nguyen, Trong Tue
    Ho, Cam Tu
    Bui, Huong Thi Thu
    Ho, Lam Khanh
    Ta, Van Thanh
    JMIR FORMATIVE RESEARCH, 2023, 7
  • [46] Utilization of machine-learning models to accurately predict the risk for critical COVID-19
    Assaf, Dan
    Gutman, Ya'ara
    Neuman, Yair
    Segal, Gad
    Amit, Sharon
    Gefen-Halevi, Shiraz
    Shilo, Noya
    Epstein, Avi
    Mor-Cohen, Ronit
    Biber, Asaf
    Rahav, Galia
    Levy, Itzchak
    Tirosh, Amit
    INTERNAL AND EMERGENCY MEDICINE, 2020, 15 (08) : 1435 - 1443
  • [47] Development of a machine learning algorithm to predict intubation among hospitalized patients with COVID-19
    Arvind, Varun
    Kim, Jun S.
    Cho, Brian H.
    Geng, Eric
    Cho, Samuel K.
    JOURNAL OF CRITICAL CARE, 2021, 62 : 25 - 30
  • [48] The COVID-19 pandemic: prediction study based on machine learning models
    Malki, Zohair
    Atlam, El-Sayed
    Ewis, Ashraf
    Dagnew, Guesh
    Ghoneim, Osama A.
    Mohamed, Abdallah A.
    Abdel-Daim, Mohamed M.
    Gad, Ibrahim
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (30) : 40496 - 40506
  • [49] Utilization of machine-learning models to accurately predict the risk for critical COVID-19
    Dan Assaf
    Ya’ara Gutman
    Yair Neuman
    Gad Segal
    Sharon Amit
    Shiraz Gefen-Halevi
    Noya Shilo
    Avi Epstein
    Ronit Mor-Cohen
    Asaf Biber
    Galia Rahav
    Itzchak Levy
    Amit Tirosh
    Internal and Emergency Medicine, 2020, 15 : 1435 - 1443
  • [50] A robust and parsimonious machine learning method to predict ICU admission of COVID-19 patients
    Famiglini, Lorenzo
    Campagner, Andrea
    Carobene, Anna
    Cabitza, Federico
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022,