On an Interpolation Problem with the Smallest subscript𝐿2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{2}$$\end{document}-Norm of the Laplace Operator

被引:0
作者
S. I. Novikov
机构
[1] Krasovskii Institute of Mathematics and Mechanics,
[2] Ural Branch of the Russian Academy of Sciences,undefined
关键词
interpolation; Laplace operator; thin plate splines;
D O I
10.1134/S0081543822060177
中图分类号
学科分类号
摘要
The paper is devoted to an interpolation problem for finite sets of real numbers bounded in the Euclidean norm. The interpolation is by a class of smooth functions of two variables with the minimum subscript𝐿2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{2}$$\end{document}-norm of the Laplace operator Δsuperscript2superscript𝑥2superscript2superscript𝑦2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta=\partial^{2}/\partial x^{2}+\partial^{2}/\partial y^{2}$$\end{document} applied to the interpolating functions. It is proved that if 𝑁3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\geq 3$$\end{document} and the interpolation points superscriptsubscriptsubscript𝑥𝑗subscript𝑦𝑗𝑗1𝑁\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{(x_{j},y_{j})\}_{j=1}^{N}$$\end{document} do not lie on the same straight line, then the minimum value of the subscript𝐿2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{2}$$\end{document}-norm of the Laplace operator on interpolants from the class of smooth functions for interpolated data from the unit ball of the space superscriptsubscript𝑙2𝑁\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{2}^{N}$$\end{document} is expressed in terms of the largest eigenvalue of the matrix of a certain quadratic form. .
引用
收藏
页码:S193 / S203
相关论文
共 11 条
[1]  
Subbotin YuN(1967)Functional interpolation in the mean with smallest $$n$$th derivative Proc. Steklov Inst. Math. 88 31-63
[2]  
Subbotin YuN(2018)Extremal functional interpolation and splines Trudy Inst. Mat. Mekh. UrO RAN 24 200-225
[3]  
Novikov SI(1940)Sur l’interpolation J. Math. Pures Appl. 19 281-306
[4]  
Shevaldin VT(1975)How small can one make the derivatives of an interpolating function? J. Approx. Theory 13 105-116
[5]  
Favard J(1976)On ‘best’ interpolation J. Approx. Theory 16 28-42
[6]  
Boor Cde(1976)Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces RAIRO Anal. Numer. 10 5-12
[7]  
Boor Cde(2000)Radial basis functions Acta Numer. 9 1-38
[8]  
Duchon J(2007)Lebesgue function for multivariate interpolation by radial basis functions Appl. Math. Comput. 187 306-314
[9]  
Buhmann MD(undefined)undefined undefined undefined undefined-undefined
[10]  
Mehri B(undefined)undefined undefined undefined undefined-undefined