Stability of Periodic Orbits and Return Trajectories of Continuous Multi-valued Maps on Intervals

被引:0
作者
Tai Xiang Sun
Fan Ping Zeng
Guang Wang Su
Bin Qin
机构
[1] Guangxi University of Finance and Economics,Guangxi Key Laboratory Cultivation Base of Cross
来源
Acta Mathematica Sinica, English Series | 2018年 / 34卷
关键词
Continuous multi-valued map; periodic orbit; stability; 37E25; 37B40; 54H20;
D O I
暂无
中图分类号
学科分类号
摘要
Let I be a compact interval of real axis ℝ, and (I, H) be the metric space of all nonempty closed subintervals of I with the Hausdorff metric H and f : I → I be a continuous multi-valued map. Assume that Pn = (x0, x1, ..., xn) is a return trajectory of f and that p ∈ [minPn, maxPn] with p ∈ f(p). In this paper, we show that if there exist k (≥ 1) centripetal point pairs of f (relative to p) in {(xi; xi+1): 0 ≤ i ≤ n − 1} and n = sk + r (0 ≤ r ≤ k − 1), then f has an R-periodic orbit, where R = s + 1 if s is even, and R = s if s is odd and r = 0, and R = s + 2 if s is odd and r > 0. Besides, we also study stability of periodic orbits of continuous multi-valued maps from I to I.
引用
收藏
页码:1121 / 1130
页数:9
相关论文
共 31 条
  • [1] Andres J.(2002)On a multivalued version of the Sarkovskii theorem and its application to differential inclusions Set-Valued Anal. 10 1-14
  • [2] Fišer J.(2007)Period two implies all periods for a class of ODEs: a multivalued map approach Proc. Amer. Math. Soc. 135 3187-3191
  • [3] Jüttner L.(2009)Sarkovskii’s theorem, differential inclusions, and beyond Topol. Methods Nonlinear Anal. 33 149-168
  • [4] Andres J.(1993)Periods for triangular maps Bull. Austral. Math. Soc. 47 41-53
  • [5] Fišer J.(1981)Stability of periodic orbits in the theorem of Sarkovskii Proc. Amer. Math. Soc. 81 333-336
  • [6] Pastor K.(1980)Topological methods in the fixed-point theory of multi-valued maps Russian Math. Surveys 35 65-143
  • [7] Andres J.(1979)On Sarkovsky’s cycle coexistence ordering Bull. Austral. Math. Soc. 20 171-177
  • [8] Fišer J.(1982)No division implies chaos Trans. Amer. Math. Soc. 273 191-199
  • [9] Pastor K.(1989)Sharkovskii’s Theorem for hereditarily decomposable chainable continua Trans. Amer. Math. Soc. 315 173-188
  • [10] Alseda L.(2016)Perodic orbits for multivalued map with continuous margins of intervals Topol. Methods Nonlinear Anal. 48 453-464