The Refined Analysis on the Convergence Behavior of Harmonic Map Sequence from Cylinders

被引:0
作者
Li Chen
Yuxiang Li
Youde Wang
机构
[1] Chinese Academy of Sciences,Academy of Mathematics and Systematic Sciences
[2] Tsinghua University,The Department of Mathematical Sciences
来源
Journal of Geometric Analysis | 2012年 / 22卷
关键词
Harmonic map; Blow up; Geodesic; 58E20; 35J35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with the convergence behavior of a sequence of harmonic maps from long cylinders with uniformly bounded energy. If the bubbling phenomenon does not occur, we give the length formula of the limit map (i.e., geodesic in the target manifold). Furthermore, we provide a geometric explanation of the energy identity for a sequence of harmonic maps from degenerating Riemann surfaces with uniformly bounded energy, proved by M. Zhu.
引用
收藏
页码:942 / 963
页数:21
相关论文
共 19 条
  • [1] Chen J.(1999)Compactification of moduli space of harmonic mappings Comment. Math. Helv. 74 201-237
  • [2] Tian G.(1995)Energy identity for a class of approximate harmonic maps from surfaces Commun. Anal. Geom. 3 543-554
  • [3] Ding W.(2006)Evolution of minimal torus in Riemannian manifolds Invent. Math. 165 225-242
  • [4] Tian G.(1985)Pseudo holomorphic curves in symplectic manifolds Invent. Math. 82 307-347
  • [5] Ding W.(1981)A proof of the collar lemma Bull. Lond. Math. Soc. 13 141-144
  • [6] Li J.(2010)A weak energy identity and the length of necks for a Sacks–Uhlenbeck Adv. Math. 225 1134-1184
  • [7] Liu Q.(1996)-harmonic map sequence J. Differ. Geom. 44 595-633
  • [8] Gromov M.(1995)Bubble tree convergence for harmonic maps Commun. Anal. Geom. 3 297-315
  • [9] Halpern N.(1997)On singularities of the heat flow for harmonic maps from surfaces into spheres Commun. Pure Appl. Math. 50 295-310
  • [10] Li Y.(1981)Bubbling of the heat flows for harmonic maps from surfaces Ann. Math. 113 1-24