Hopf Real Hypersurfaces in the Indefinite Complex Projective Space

被引:0
|
作者
Makoto Kimura
Miguel Ortega
机构
[1] Ibaraki University,Department of Mathematics Faculty of Science
[2] Universidad de Granada,Departamento de Geometría y Topología Facultad de Ciencias Instituto de Matemáticas IEMathUGR
来源
Mediterranean Journal of Mathematics | 2019年 / 16卷
关键词
Real hypersurface; indefinite complex projective space; Hopf real hypersurface; Primary 53B25; 53C50; Secondary 53C42; 53B30;
D O I
暂无
中图分类号
学科分类号
摘要
We wish to attack the problems that Anciaux and Panagiotidou posed in (Differ Geom Appl 42:1–14, https://doi.org/10.1016/j.difgeo.2015.05.004, 2015), for non-degenerate real hypersurfaces in indefinite complex projective space. We will slightly change these authors’ point of view, obtaining cleaner equations for the almost-contact metric structure. To make the theory meaningful, we construct new families of non-degenerate Hopf real hypersurfaces whose shape operator is diagonalisable, and one Hopf example with degenerate metric and non-diagonalisable shape operator. Next, we obtain a rigidity result. We classify those real hypersurfaces which are η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-umbilical. As a consequence, we characterize some of our new examples as those whose Reeb vector field ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} is Killing.
引用
收藏
相关论文
共 50 条
  • [1] Hopf Real Hypersurfaces in the Indefinite Complex Projective Space
    Kimura, Makoto
    Ortega, Miguel
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (02)
  • [2] Ruled Real Hypersurfaces in the Indefinite Complex Projective Space
    Marilena Moruz
    Miguel Ortega
    Juan de Dios Pérez
    Results in Mathematics, 2022, 77
  • [3] Ruled Real Hypersurfaces in the Indefinite Complex Projective Space
    Moruz, Marilena
    Ortega, Miguel
    de Dios Perez, Juan
    RESULTS IN MATHEMATICS, 2022, 77 (04)
  • [4] HOPF HYPERSURFACES IN THE COMPLEX PROJECTIVE SPACE AND THE SASAKIAN SPACE FORM
    Abedi, E.
    Ilmakchi, M.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, 7 (01): : 34 - 45
  • [5] REAL HYPERSURFACES OF A COMPLEX PROJECTIVE SPACE
    MAEDA, Y
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1976, 28 (03) : 529 - 540
  • [6] Real hypersurfaces of a complex projective space
    Deshmukh, Sharief
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2011, 121 (02): : 171 - 179
  • [7] Real hypersurfaces of a complex projective space
    SHARIEF DESHMUKH
    Proceedings - Mathematical Sciences, 2011, 121 : 171 - 179
  • [8] The rigidity for real hypersurfaces in a complex projective space
    Takagi, R
    Kim, IB
    Kim, BH
    TOHOKU MATHEMATICAL JOURNAL, 1998, 50 (04) : 531 - 536
  • [9] ON REAL HYPERSURFACES OF A COMPLEX PROJECTIVE-SPACE
    KIMURA, M
    MAEDA, S
    MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (03) : 299 - 311
  • [10] REAL HYPERSURFACES OF A COMPLEX PROJECTIVE-SPACE
    KIMURA, M
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 33 (03) : 383 - 387