Extremal Regions and Multiplicity of Positive Solutions for Singular Superlinear Elliptic Systems with Indefinite-Sign Potential

被引:0
作者
Ricardo Lima Alves
Carlos Alberto Santos
Kaye Silva
机构
[1] Universidade Federal do Acre,Departamento de Matemática
[2] Centro de Ciências exatas e Tecnológicas,Instituto de Matemática e Estatística
[3] Universidade de Brasília,undefined
[4] Universidade Federal de Goiás,undefined
来源
Milan Journal of Mathematics | 2023年 / 91卷
关键词
Singular system; Indefinite potential; Variational methods; Global existence; 35J75; 35J50;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we deal with the existence, nonexistence and multiplicity of positive solutions for the singular superlinear and subcritical multi-parameter elliptic system -Δu=λa(x)u-γ+αα+βb(x)uα-1vβinΩ,-Δv=μc(x)v-γ+βα+βb(x)uαvβ-1inΩ,u=v=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u = \lambda a(x)u^{-\gamma }+\frac{\alpha }{\alpha +\beta } b(x)u^{\alpha -1}v^{\beta }~in ~ \Omega ,\\ -\Delta v = \mu c(x)v^{-\gamma }+\frac{\beta }{\alpha +\beta }b(x)u^{\alpha }v^{\beta -1}~in~ \Omega ,\\ u=v=0~\text{ on }~\partial \Omega , \end{array}\right. } \end{aligned}$$\end{document}where Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{N}$$\end{document}(N≥3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N\ge 3)$$\end{document} is a bounded domain with smooth boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, 0<a,c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<a,c$$\end{document} in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, b∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in L^{\infty }(\Omega )$$\end{document} may change its sign and satisfy some technical conditions, which will be mentioned later on; λ,μ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ,\mu \ge 0$$\end{document} are real parameters. Our main objective is to establish the existence of two extremal regions, one of which is optimal for the applicability of the Nehari manifold method for non-differentiable functionals, and the other one is optimal for the existence of positive solutions when b is positive. By using the idea of extremal values for the applicability of the Nehari manifold method, we also obtain multiplicity of positive solutions beyond this extremal region. To show the existence of the second region we prove a super-solution theorem. The results obtained are new and improve the existing results in the literature.
引用
收藏
页码:213 / 253
页数:40
相关论文
共 59 条
[1]  
Alves CO(2005)Existence of solutions for some classes of singular Hamiltonian systems Adv. Nonlinear Stud. 5 265-278
[2]  
Corrêa FJSA(2000)On systems of elliptic equations involving subcritical or critical Sobolev exponents Nonlinear Anal. 42 771-787
[3]  
Gonçalves JVA(2020)Extremal curves for existence of positive solutions for multi-parameter elliptic systems in Milan J. Math. 88 1-33
[4]  
Alves CO(2013)Asymptotic behaviour of branches for ground states of elliptic systems Electron. J. Differ. Equ. 212 21-607
[5]  
de Morais Filho DC(2016)Maximal existence domains of positive solutions for two-parametric systems of elliptic equations Complex Var. Elliptic Equ. 61 587-267
[6]  
Souto MAS(2003)Existence of multiple solutions for quasilinear systems via fibering method J. Differ. Equ. 190 239-472
[7]  
Alves RL(1993) versus C. R. Acad. Sci. Paris 317 465-4432
[8]  
Alves CO(2020) local minimizers Commun. Pure Appl. Anal. 19 4401-222
[9]  
Santos CAP(1977)Ground and bound state solutions for quasilinear elliptic systems including singular nonlinearities and indefinite potentials Comm. Part. Differe. Equ. 2 193-467
[10]  
Bobkov V(2003)On a Dirichlet problem with a singular nonlinearity J. Funct. Anal. 199 452-532