Characterizations and constructions of triple-cycle permutations of the form xrh(xs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^rh(x^s)$$\end{document}

被引:0
作者
Mengna Wu
Chengju Li
Zilong Wang
机构
[1] East China Normal University,Shanghai Key Laboratory of Trustworthy Computing
[2] State Key Laboratory of Integrated Services and Networks,School of Cyber Engineering
[3] Xidian University,undefined
来源
Designs, Codes and Cryptography | 2020年 / 88卷
关键词
Permutation polynomial; Triple-cycle permutation; Finite field; Block cipher; 06E30; 14G50; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document} be the finite field with q elements and let f be a permutation polynomial over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}. Let Sq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_q$$\end{document} denote the symmetric group on Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}. In this paper, we mainly investigate some characterizations on the elements f∈Sq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in S_q$$\end{document} of order 3, i.e., f∘f∘f=I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\circ f\circ f=I$$\end{document}, where f is also called a triple-cycle permutation in the literature. Some explicit triple-cycle permutations are constructed.
引用
收藏
页码:2119 / 2132
页数:13
相关论文
共 58 条
[31]  
Yuan P(undefined)undefined undefined undefined undefined-undefined
[32]  
Gupta R(undefined)undefined undefined undefined undefined-undefined
[33]  
Sharma RK(undefined)undefined undefined undefined undefined-undefined
[34]  
Li K(undefined)undefined undefined undefined undefined-undefined
[35]  
Qu L(undefined)undefined undefined undefined undefined-undefined
[36]  
Sun B(undefined)undefined undefined undefined undefined-undefined
[37]  
Li C(undefined)undefined undefined undefined undefined-undefined
[38]  
Liu X(undefined)undefined undefined undefined undefined-undefined
[39]  
Chen Y(undefined)undefined undefined undefined undefined-undefined
[40]  
Xu Y(undefined)undefined undefined undefined undefined-undefined