Characterizations and constructions of triple-cycle permutations of the form xrh(xs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^rh(x^s)$$\end{document}

被引:0
作者
Mengna Wu
Chengju Li
Zilong Wang
机构
[1] East China Normal University,Shanghai Key Laboratory of Trustworthy Computing
[2] State Key Laboratory of Integrated Services and Networks,School of Cyber Engineering
[3] Xidian University,undefined
来源
Designs, Codes and Cryptography | 2020年 / 88卷
关键词
Permutation polynomial; Triple-cycle permutation; Finite field; Block cipher; 06E30; 14G50; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document} be the finite field with q elements and let f be a permutation polynomial over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}. Let Sq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_q$$\end{document} denote the symmetric group on Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}. In this paper, we mainly investigate some characterizations on the elements f∈Sq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in S_q$$\end{document} of order 3, i.e., f∘f∘f=I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\circ f\circ f=I$$\end{document}, where f is also called a triple-cycle permutation in the literature. Some explicit triple-cycle permutations are constructed.
引用
收藏
页码:2119 / 2132
页数:13
相关论文
共 58 条
[1]  
Akbary A(2007)On polynomials of the form Int. J. Math. Math. Sci. 2007 23408-53
[2]  
Wang Q(2003)Analysis of involutional ciphers: Khazad and Anubis Fast Softw. Encryption 2887 45-225
[3]  
Biryukov A(2012)PRINCE: a low-latency block cipher for pervasive computing applications Adv. Cryptol. 7658 208-2276
[4]  
Borghoff J(2016)Involutions over the Galois Field IEEE Trans. Inf. Theory 62 2266-714
[5]  
Canteaut A(2018)Boomerang connectivity table: a new cryptanalysis tool Adv. Cryptol. 10821 683-2986
[6]  
Güneysu T(2018)Bent functions from involutions over IEEE Trans. Inf. Theory 64 2979-92
[7]  
Kavun EB(2015)Permutation trinomials over finite fields with even characteristic SIAM J. Discret. Math. 29 79-96
[8]  
Knezevic M(2016)Some new classes of permutation trinomials over finite fields with even characteristic Finite Fields Appl. 41 89-7553
[9]  
Knudsen LR(2019)New results about the boomerang uniformity of permutation polynomials IEEE Trans. Inf. Theory 65 7542-292
[10]  
Leander G(2019)Triple-cycle permutations over finite fields of characteristic two Int. J. Found. Comp. Sci. 30 275-74