Alignment of single-cell trajectories to compare cellular expression dynamics

被引:0
|
作者
Alpert A. [1 ]
Moore L.S. [1 ]
Dubovik T. [1 ]
Shen-Orr S.S. [1 ]
机构
[1] Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
基金
以色列科学基金会;
关键词
D O I
10.1038/nmeth.4628
中图分类号
学科分类号
摘要
Single-cell RNA sequencing and high-dimensional cytometry can be used to generate detailed trajectories of dynamic biological processes such as differentiation or development. Here we present cellAlign, a quantitative framework for comparing expression dynamics within and between single-cell trajectories. By applying cellAlign to mouse and human embryonic developmental trajectories, we systematically delineate differences in the temporal regulation of gene expression programs that would otherwise be masked. © 2018 Nature Publishing Group. All rights reserved.
引用
收藏
页码:267 / 270
页数:3
相关论文
共 50 条
  • [41] scTopoGAN: unsupervised manifold alignment of single-cell data
    Singh, Akash
    Biharie, Kirti
    Reinders, Marcel J. T.
    Mahfouz, Ahmed
    Abdelaal, Tamim
    BIOINFORMATICS ADVANCES, 2023, 3 (01):
  • [42] SingmiR: a single-cell miRNA alignment and analysis tool
    Engel, Annika
    Rishik, Shusruto
    Hirsch, Pascal
    Keller, Verena
    Fehlmann, Tobias
    Kern, Fabian
    Keller, Andreas
    NUCLEIC ACIDS RESEARCH, 2024, 52 (W1) : W374 - W380
  • [43] Defining cellular population dynamics at single-cell resolution during prostate cancer progression
    Germanos, Alexandre A.
    Arora, Sonali
    Zheng, Ye
    Goddard, Erica T.
    Coleman, Ilsa M.
    Ku, Anson T.
    Wilkinson, Scott
    Song, Hanbing
    Brady, Nicholas J.
    Amezquita, Robert A.
    Zager, Michael
    Long, Annalysa
    Yang, Yu Chi
    Bielas, Jason H.
    Gottardo, Raphael
    Rickman, David S.
    Huang, Franklin W.
    Ghajar, Cyrus M.
    Nelson, Peter S.
    Sowalsky, Adam G.
    Setty, Manu
    Hsieh, Andrew C.
    ELIFE, 2022, 11
  • [44] Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming
    Schiebinger, Geoffrey
    Shu, Jian
    Tabaka, Marcin
    Cleary, Brian
    Subramanian, Vidya
    Solomon, Aryeh
    Gould, Joshua
    Liu, Siyan
    Lin, Stacie
    Berube, Peter
    Lee, Lia
    Chen, Jenny
    Brumbaugh, Justin
    Rigollet, Philippe
    Hochedlinger, Konrad
    Jaenisch, Rudolf
    Regev, Aviv
    Lander, Eric S.
    CELL, 2019, 176 (04) : 928 - +
  • [45] Intrinsically Bayesian robust classifier for single-cell gene expression trajectories in gene regulatory networks
    Karbalayghareh, Alireza
    Braga-Neto, Ulisses
    Dougherty, Edward R.
    BMC SYSTEMS BIOLOGY, 2018, 12
  • [46] GETting at single-cell chromatin dynamics
    Clyde, Dorothy
    NATURE REVIEWS GENETICS, 2021, 22 (12) : 748 - 748
  • [47] GETting at single-cell chromatin dynamics
    Dorothy Clyde
    Nature Reviews Genetics, 2021, 22 : 748 - 748
  • [48] Single-cell recording of cellular RNAs in bacteria
    Nature Biotechnology, 2023, 41 : 1076 - 1077
  • [49] Single-cell microarray for analyzing cellular response
    Yamamura, S
    Kishi, H
    Tokimitsu, Y
    Kondo, S
    Honda, R
    Rao, SR
    Omori, M
    Tamiya, E
    Muraguchi, A
    ANALYTICAL CHEMISTRY, 2005, 77 (24) : 8050 - 8056
  • [50] Mosquito cellular immunity at single-cell resolution
    Gianmarco Raddi
    四川生理科学杂志, 2020, 42 (03) : 260 - 260