Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women

被引:0
作者
Jennifer L. Trilk
Arpit Singhal
Kevin A. Bigelman
Kirk J. Cureton
机构
[1] University of Georgia,Department of Kinesiology
[2] University of South Carolina,Department of Exercise Science, Arnold School of Public Health
来源
European Journal of Applied Physiology | 2011年 / 111卷
关键词
Aerobic capacity; Cardiac output; Stroke volume; Physical conditioning; Training intensity;
D O I
暂无
中图分类号
学科分类号
摘要
Very high-intensity, low-volume, sprint interval training (SIT) increases muscle oxidative capacity and may increase maximal oxygen uptake (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{V}\text{O}}_{{ 2 {\text{max}}}} $$\end{document}), but whether circulatory function is improved, and whether SIT is feasible in overweight/obese women is unknown. To examine the effects of SIT on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{V}\text{O}}_{{ 2 {\text{max}}}} $$\end{document} and circulatory function in sedentary, overweight/obese women. Twenty-eight women with BMI > 25 were randomly assigned to SIT or control (CON) groups. One week before pre-testing, subjects were familarized to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{V}\text{O}}_{{ 2 {\text{max}}}} $$\end{document} testing and the workload that elicited 50% \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{V}\text{O}}_{{ 2 {\text{max}}}} $$\end{document} was calculated. Pre- and post-intervention, circulatory function was measured at 50% of the pre-intervention \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{V}\text{O}}_{{ 2 {\text{max}}}} $$\end{document}, and a GXT was performed to determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{V}\text{O}}_{{ 2 {\text{max}}}} $$\end{document}. During the intervention, SIT training was given for 3 days/week for 4 weeks. Training consisted of 4–7, 30-s sprints on a stationary cycle (5% body mass as resistance) with 4 min active recovery between sprints. CON maintained baseline physical activity. Post-intervention, heart rate (HR) was significantly lower and stroke volume (SV) significantly higher in SIT (−8.1 and 11.4%, respectively; P < 0.05) during cycling at 50% \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{V}\text{O}}_{{ 2 {\text{max}}}} $$\end{document}; changes in CON were not significant (3 and −4%, respectively). Changes in cardiac output (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\text{Q}}} $$\end{document}) and arteriovenous oxygen content difference [(a − v)O2 diff] were not significantly different for SIT or CON. The increase in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{V}\text{O}}_{{ 2 {\text{max}}}} $$\end{document} by SIT was significantly greater than by CON (12 vs. −1%). Changes by SIT and CON in HRmax (−1 vs. −1%) were not significantly different. Four weeks of SIT improve circulatory function during submaximal exercise and increases \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{V}\text{O}}_{{ 2 {\text{max}}}} $$\end{document} in sedentary, overweight/obese women.
引用
收藏
页码:1591 / 1597
页数:6
相关论文
共 138 条
[1]  
Bailey SJ(2009)Influence of repeated sprint training on pulmonary O J Appl Physiol 106 1875-1887
[2]  
Wilkerson DP(1989) uptake and muscle deoxygenation kinetics in humans JAMA 262 2395-2401
[3]  
Dimenna FJ(2005)Physical fitness and all-cause mortality: a prospective study of healthy men and women J Appl Physiol 98 1985-1990
[4]  
Jones AM(2007)Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans Am J Physiol Regul Integr Comp Physiol 292 R1970-R1976
[5]  
Blair SN(2008)Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining J Physiol (Lond) 586 151-160
[6]  
Kohl HW(1975)Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans J Appl Physiol 39 891-895
[7]  
Paffenbarger RS(2007)Effect of training on cardiovascular response to exercise in women Eur J Appl Physiol 101 377-383
[8]  
Clark DG(2008)Improvement of Am J Physiol Regul Integr Comp Physiol 295 R264-R272
[9]  
Cooper KH(1974)O J Appl Physiol 37 247-248
[10]  
Gibbons LW(1968) by cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training J Appl Physiol 24 518-528