Electron microscopic study of the effect of fullerene on the formation of amyloid fibrils by the Aβ25-35 peptide

被引:7
|
作者
Podlubnaya Z.A. [1 ,2 ]
Podol'Skii I.Ya. [1 ,2 ]
Shpagina M.D. [1 ]
Marsagishvili L.G. [1 ]
机构
[1] Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region
[2] Pushchino State University, Pushchino, Moscow Region
基金
俄罗斯基础研究基金会;
关键词
Aβ[!sub]25-35[!/sub; Alzheimer's disease; Amyloidoses; Amyloids; Electron microscopy; Fullerene;
D O I
10.1134/S0006350906050046
中图分类号
学科分类号
摘要
The antiamyloidogenic effect of hydrated fullerence C60 HyFn was shown by electron microscopy. It was found that fullerene binds to growing fibrils formed by the [beta]-amyloid peptide Aβ25-35 and thus prevents their further growth and interferes with the formation of new fibrils. Instead of long broad helically twisted 'ribbons' formed by Aβ 25-35 in the absence of fullerene, short narrow protofibrils form in its presence. These results suggest that fullerenes can be useful in treatment for Alzheimer's disease. © Nauka/Interperiodica 2006.
引用
收藏
页码:701 / 704
页数:3
相关论文
共 50 条
  • [11] Mica Lattice Orientation of Epitaxially Grown Amyloid β25-35 Fibrils
    Ferenczy, Gyoergy G.
    Murvai, Unige
    Fulop, Livia
    Kellermayer, Miklos
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (19)
  • [12] Epitaxial Assembly Kinetics of Mutant Amyloid Beta 25-35 Fibrils
    Kellermayer, Miklos S.
    Horvath, Andrea
    Murvai, Unige
    Soos, Katalin
    Penke, Botond
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 456A - 456A
  • [13] Comparison of Epitaxially and Solution-Grown Amyloid β25-35 Fibrils
    Murvai, Uenige
    Somkuti, Judit
    Soos, Katalin
    Penke, Botond
    Smeller, Laszlo
    Kellermayer, Miklos S. Z.
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 442A - 442A
  • [14] Oriented epitaxial growth of amyloid fibrils of the N27C mutant β25-35 peptide
    Karsai, Arpad
    Murvai, Uenige
    Soos, Katalin
    Penke, Botond
    Kellermayer, Miklos S. Z.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2008, 37 (07): : 1133 - 1137
  • [15] A two-dimensional approach to study amyloid β-peptide fragment (25-35)
    Triulzi, Robert C.
    Li, Changqing
    Naistat, David
    Orbulescu, Jhony
    Leblanc, Roger M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (12): : 4661 - 4666
  • [16] Effect of phospholipid membrane on conformation of retro-sequence amyloid-β-peptide 35-25 and normal amyloid-β-peptide 25-35
    Kodaka, M
    PROTEIN AND PEPTIDE LETTERS, 2001, 8 (05): : 395 - 398
  • [17] Structural Consequences of Epitaxial Assembly Constraints Imposed on Amyloid β25-35 Fibrils
    Murvai, Uenige
    Kellermayer, Miklos S. Z.
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 202 - 202
  • [18] The methylated compounds affect the aggregation of amyloid peptide (25-35)
    Grimaldi, M.
    Di Marino, S.
    Scrima, M.
    Iuliano, A.
    Polverino, A.
    Sorrentino, G.
    D'Ursi, A. M.
    JOURNAL OF ALZHEIMERS DISEASE, 2014, 41 : S31 - S31
  • [19] Interactions between gold nanoparticles and amyloid β25-35 peptide
    Peng, Jian
    Weng, Jian
    Ren, Lei
    Sun, Li-Ping
    IET NANOBIOTECHNOLOGY, 2014, 8 (04) : 295 - 303
  • [20] Thermally-Induced Effects in Oriented Network of Amyloid β25-35 fibrils
    Kolsofszki, M.
    Karsai, A.
    Soos, K.
    Penke, B.
    Kellermayer, M. S. Z.
    COLLOIDS FOR NANO- AND BIOTECHNOLOGY, 2008, 135 : 169 - +