Physiological Relevance of Uniform Elastic Tube-Models to Infer Descending Aortic Wave Reflection: A Problem of Identifiability

被引:0
作者
R. Burattini
K. B. Campbell
机构
[1] University of Ancona,Department of Electronics and Automatics
[2] Washington State University,Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology
来源
Annals of Biomedical Engineering | 2000年 / 28卷
关键词
Arterial pulse wave propagation; Determinacy problem; Arterial effective reflection site; Vascular impedance;
D O I
暂无
中图分类号
学科分类号
摘要
A uniform, frictional elastic tube terminating in a pure resistor (model A), was compared with a uniform, frictionless elastic tube, terminating in a first-order low-pass filter load (model B). The aim was to address an identifiability problem in uniqueness of parameter estimates and to evaluate the physiological meaning of tube-length estimates obtained from these models applied to the descending aortic circulation. Measurements of high descending aortic pressure and flow were taken from three anaesthetized, open-chest dogs and used to estimate the model parameters. A simultaneous measurement of terminal aortic pressure was used to estimate the foot-to-foot pulse wave velocity. A flow-fitting procedure yielded a multiplicity of equivalent solutions for the wave transit time across the transmission tubes (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\tau }_{ai}$$ \end{document} for model A and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\tau }_{bi}$$ \end{document} for model B, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$i = 0,1,2,...,N,...$$ \end{document} and the related tube-lengths \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d_{ai}$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d_{bi}$$ \end{document} respectively. The tube length represents the distance to an effective reflection site (effective length) of the descending aortic circulation. Assuming that this length should be no longer than the dimensions of the body, the lowest estimates (i=0) of wave transit time and tube length (average ±SE: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\tau }_{ao} = 85.7 \pm 10.8{ms}$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d_{ao} = 53.4 \pm 3.7 {cm}$$ \end{document} for model A; \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\tau }_{bo} = 46.6 \pm 6.7 {ms}$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d_{bo} = 29.1 \pm 3.5{cm}$$ \end{document} for model B) were identifiable as unique and acceptable solutions. Model A located the effective reflection site a few centimeters below the terminal aortic region. This location is inconsistent with the use of a pure resistor as a tube's terminal load. Further, relatively high estimates of longitudinal frictional losses violated the assumption of small losses across the transmission path and yielded an unphysiological mean-pressure drop of 7.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\pm$$ \end{document}2.3mm Hg. The estimates of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d_{bo}$$ \end{document} provided by model B located the effective reflection site near the origin of the renal arteries. The model-predicted pressure wave at this location approximated the measured pressure. Thus, model B represents a significant improvement over model A as a tool to infer wave travel and reflection in the descending aortic circulation. © 2000 Biomedical Engineering Society.
引用
收藏
页码:512 / 523
页数:11
相关论文
共 69 条
  • [1] Bellman R.(1970)On structural identifiability Math. Biosci. 7 329–339-H1774
  • [2] Åström K. J.(1993)Repeated reflection of waves in the systemic arterial system Am. J. Physiol. 264 H269-H281-undefined
  • [3] Berger D. S.(1978)Problem of determinacy in compartmental modeling with application to bilirubin kinet-ics Math. Biosci. 40 205–224-undefined
  • [4] Li J. K.(1989)Modified asymmetric T-tube-model to infer arterial wave reflection at the aortic root IEEE Trans. Biomed. Eng. 36 805–814-undefined
  • [5] Laskey W. K.(1993)Effective distributed com-pliance of the canine descending aorta estimated by modified T-tube model Am. J. Physiol. 264 H1977-H1987-undefined
  • [6] Noorder-graaf A.(1988)Effective length of the arterial circulation determined in the dog by aid of a model of the systemic input impedance IEEE Trans. Biomed. Eng. 35 53–61-undefined
  • [7] Brown R. F.(1985)A simple algorithm for defining the mean cardiac cycle of aortic flow and pressure during steady state Comput. Biomed. Res. 18 303–312-undefined
  • [8] Godfrey K. R.(1994)Lumped model of terminal aortic impedance in the dog Ann. Biomed. Eng. 22 381–391-undefined
  • [9] Burattini R.(1991)Two arterial effective reflecting sites may appear as one to the heart Circ. Res. 68 85–99-undefined
  • [10] Campbell K. B.(1990)Time-domain formulation of asymmetric T-tube model of arterial system Am. J. Physiol. 258 H1761-undefined