Affine processes are regular

被引:0
作者
Martin Keller-Ressel
Walter Schachermayer
Josef Teichmann
机构
[1] ETH Zürich,Faculty of Mathematics
[2] D-Math,undefined
[3] University of Vienna,undefined
来源
Probability Theory and Related Fields | 2011年 / 151卷
关键词
Affine processes; Regularity; Characteristic function; Semiflow; 60J25; 39B32;
D O I
暂无
中图分类号
学科分类号
摘要
We show that stochastically continuous, time-homogeneous affine processes on the canonical state space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}_{\geq 0}^m \times \mathbb{R}^n}$$\end{document} are always regular. In the paper of Duffie et al. (Ann Appl Probab 13(3):984–1053, 2003) regularity was used as a crucial basic assumption. It was left open whether this regularity condition is automatically satisfied for stochastically continuous affine processes. We now show that the regularity assumption is indeed superfluous, since regularity follows from stochastic continuity and the exponentially affine form of the characteristic function. For the proof we combine classic results on the differentiability of transformation semigroups with the method of the moving frame which has been recently found to be useful in the theory of SPDEs.
引用
收藏
页码:591 / 611
页数:20
相关论文
共 50 条
  • [41] Affine multiple yield curve models
    Cuchiero, Christa
    Fontana, Claudio
    Gnoatto, Alessandro
    MATHEMATICAL FINANCE, 2019, 29 (02) : 568 - 611
  • [42] The Affine Bernstein and Boundary Value Problems
    DYNAMICAL AND GEOMETRIC ASPECTS OF HAMILTON-JACOBI AND LINEARIZED MONGE-AMPERE EQUATIONS, VIASM 2016, 2017, 2183 : 7 - 33
  • [43] Weakly Regular Subdivisions
    Lionel Pournin
    Discrete & Computational Geometry, 2012, 47 : 106 - 116
  • [44] Graphs with regular monoids
    Li, WM
    DISCRETE MATHEMATICS, 2003, 265 (1-3) : 105 - 118
  • [45] Description of regular and intra-regular ordered semigroups by tripolar fuzzy ideals
    Wattanasiripong, Nuttapong
    Lekkoksung, Nareupanat
    Lekkoksung, Somsak
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (03): : 290 - 297
  • [46] Quadratic hedging in affine stochastic volatility models
    Jan Kallsen
    Richard Vierthauer
    Review of Derivatives Research, 2009, 12 : 3 - 27
  • [47] Perverse F p -sheaves on the affine Grassmannian
    Cass, Robert
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (785): : 219 - 272
  • [48] THE CENTRO-AFFINE MINKOWSKI PROBLEM FOR POLYTOPES
    Zhu, Guangxian
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (01) : 159 - 174
  • [49] On the algebraic invariants of certain affine semigroup rings
    Om Prakash Bhardwaj
    Indranath Sengupta
    Semigroup Forum, 2023, 106 : 24 - 50
  • [50] On the Stability of the p-Affine Isoperimetric Inequality
    Ivaki, Mohammad N.
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (04) : 1898 - 1911