We show that stochastically continuous, time-homogeneous affine processes on the canonical state space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}_{\geq 0}^m \times \mathbb{R}^n}$$\end{document} are always regular. In the paper of Duffie et al. (Ann Appl Probab 13(3):984–1053, 2003) regularity was used as a crucial basic assumption. It was left open whether this regularity condition is automatically satisfied for stochastically continuous affine processes. We now show that the regularity assumption is indeed superfluous, since regularity follows from stochastic continuity and the exponentially affine form of the characteristic function. For the proof we combine classic results on the differentiability of transformation semigroups with the method of the moving frame which has been recently found to be useful in the theory of SPDEs.
机构:
Univ Paris Diderot, Batiment Sophie Germain,Ave France, F-75205 Paris, FranceUniv Paris Diderot, Batiment Sophie Germain,Ave France, F-75205 Paris, France
Cuchiero, Christa
Teichmann, Josef
论文数: 0引用数: 0
h-index: 0
机构:
Swiss Fed Inst Technol, Ramistr 101, CH-8092 Zurich, SwitzerlandUniv Paris Diderot, Batiment Sophie Germain,Ave France, F-75205 Paris, France
机构:
Univ Paris Est, Project Team MathFi ENPC INRIA UMLV, Ecole Ponts, CERMICS, F-77455 Marne La Vallee, FranceUniv Paris Est, Project Team MathFi ENPC INRIA UMLV, Ecole Ponts, CERMICS, F-77455 Marne La Vallee, France
Ahdida, Abdelkoddousse
Alfonsi, Aurelien
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, Project Team MathFi ENPC INRIA UMLV, Ecole Ponts, CERMICS, F-77455 Marne La Vallee, FranceUniv Paris Est, Project Team MathFi ENPC INRIA UMLV, Ecole Ponts, CERMICS, F-77455 Marne La Vallee, France
机构:
Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, Rio De Janeiro, BrazilUniv Fed Minas Gerais, Dept Matemat, ICEx, BR-30123970 Belo Horizonte, MG, Brazil