Affine processes are regular

被引:0
|
作者
Martin Keller-Ressel
Walter Schachermayer
Josef Teichmann
机构
[1] ETH Zürich,Faculty of Mathematics
[2] D-Math,undefined
[3] University of Vienna,undefined
来源
Probability Theory and Related Fields | 2011年 / 151卷
关键词
Affine processes; Regularity; Characteristic function; Semiflow; 60J25; 39B32;
D O I
暂无
中图分类号
学科分类号
摘要
We show that stochastically continuous, time-homogeneous affine processes on the canonical state space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}_{\geq 0}^m \times \mathbb{R}^n}$$\end{document} are always regular. In the paper of Duffie et al. (Ann Appl Probab 13(3):984–1053, 2003) regularity was used as a crucial basic assumption. It was left open whether this regularity condition is automatically satisfied for stochastically continuous affine processes. We now show that the regularity assumption is indeed superfluous, since regularity follows from stochastic continuity and the exponentially affine form of the characteristic function. For the proof we combine classic results on the differentiability of transformation semigroups with the method of the moving frame which has been recently found to be useful in the theory of SPDEs.
引用
收藏
页码:591 / 611
页数:20
相关论文
共 50 条
  • [1] Affine processes are regular
    Keller-Ressel, Martin
    Schachermayer, Walter
    Teichmann, Josef
    PROBABILITY THEORY AND RELATED FIELDS, 2011, 151 (3-4) : 591 - 611
  • [2] AFFINE VOLTERRA PROCESSES
    Jaber, Eduardo Abi
    Larsson, Martin
    Pulido, Sergio
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (05) : 3155 - 3200
  • [3] Exponentially affine martingales, affine measure changes and exponential moments of affine processes
    Kallsen, Jan
    Muhle-Karbe, Johannes
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (02) : 163 - 181
  • [4] Affine Processes on Symmetric Cones
    Cuchiero, Christa
    Keller-Ressel, Martin
    Mayerhofer, Eberhard
    Teichmann, Josef
    JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (02) : 359 - 422
  • [5] Affine processes and applications in finance
    Duffie, D
    Filipovic, D
    Schachermayer, W
    ANNALS OF APPLIED PROBABILITY, 2003, 13 (03) : 984 - 1053
  • [6] Affine Processes on Symmetric Cones
    Christa Cuchiero
    Martin Keller-Ressel
    Eberhard Mayerhofer
    Josef Teichmann
    Journal of Theoretical Probability, 2016, 29 : 359 - 422
  • [7] Path Properties and Regularity of Affine Processes on General State Spaces
    Cuchiero, Christa
    Teichmann, Josef
    SEMINAIRE DE PROBABILITES XLV, 2013, 2078 : 201 - 244
  • [8] Affine LIBOR models driven by real-valued affine processes
    Mueller, Wolfgang
    Waldenberger, Stefan
    STOCHASTIC MODELS, 2016, 32 (02) : 333 - 350
  • [9] Holomorphic transforms with application to affine processes
    Belomestny, Denis
    Kampen, Joerg
    Schoenmakers, John
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (04) : 1222 - 1250
  • [10] Markov-modulated affine processes
    Kurt, Kevin
    Frey, Rudiger
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 153 : 391 - 422