Entropy-Stable Multidimensional Summation-by-Parts Discretizations on hp-Adaptive Curvilinear Grids for Hyperbolic Conservation Laws

被引:0
|
作者
Siavosh Shadpey
David W. Zingg
机构
[1] University of Toronto Institute for Aerospace Studies,Computational Aerodynamics and Sustainable Aviation
[2] University of Toronto Institute for Aerospace Studies,undefined
来源
Journal of Scientific Computing | 2020年 / 82卷
关键词
Summation-by-Parts; Entropy stability; High order; Non-conforming grids; Curvilinear grids;
D O I
暂无
中图分类号
学科分类号
摘要
We develop high-order entropy-conservative semi-discrete schemes for hyperbolic conservation laws applicable to non-conforming curvilinear grids arising from h-, p-, or hp-adaptivity. More precisely, building on previous work with conforming grids by Crean et al. (J Comput Phys 356:410–438, 2018) and Chan et al. (SIAM J Sci Comput 41:A2938–A2966, 2019), we present two schemes: the first couples neighbouring elements in a skew-symmetric method, the second in a pointwise fashion. The key ingredients are degree p diagonal-norm summation-by-parts operators equipped with interface quadrature rules of degree 2p or higher, a skew-symmetric geometric mapping procedure using suitable polynomial functions, and a numerical flux that conserves mathematical entropy. Furthermore, entropy-stable schemes are obtained when augmenting the original schemes with a stabilization term that dissipates mathematical entropy at element interfaces. We provide both theoretical and numerical analysis for the compressible Euler equations demonstrating the element-wise conservation, entropy conservation/dissipation, and accuracy properties of the schemes. While both methods produce comparable results, our studies suggest that the scheme coupling elements in a pointwise manner is more computationally efficient.
引用
收藏
相关论文
共 15 条
  • [1] Entropy-Stable Multidimensional Summation-by-Parts Discretizations on hp-Adaptive Curvilinear Grids for Hyperbolic Conservation Laws
    Shadpey, Siavosh
    Zingg, David W.
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (03)
  • [2] Staggered-grid entropy-stable multidimensional summation-by-parts discretizations on curvilinear coordinates
    Fernandez, David C. Del Rey
    Crean, Jared
    Carpenter, Mark H.
    Hicken, Jason E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 392 : 161 - 186
  • [3] Entropy-Stable, High-Order Summation-by-Parts Discretizations Without Interface Penalties
    Jason E. Hicken
    Journal of Scientific Computing, 2020, 82
  • [4] Entropy-Stable, High-Order Summation-by-Parts Discretizations Without Interface Penalties
    Hicken, Jason E.
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (02)
  • [5] Entropy Stable Space–Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation Laws
    Lucas Friedrich
    Gero Schnücke
    Andrew R. Winters
    David C. Del Rey Fernández
    Gregor J. Gassner
    Mark H. Carpenter
    Journal of Scientific Computing, 2019, 80 : 175 - 222
  • [6] Entropy Stable Space-Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation Laws
    Friedrich, Lucas
    Schnuecke, Gero
    Winters, Andrew R.
    Fernandez, David C. Del Rey
    Gassner, Gregor J.
    Carpenter, Mark H.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 175 - 222
  • [7] Entropy-stable p-nonconforming discretizations with the summation-by-parts property for the compressible Navier-Stokes equations
    Fernandez, David C. Del Rey
    Carpenter, Mark H.
    Dalcin, Lisandro
    Fredrich, Lucas
    Winters, Andrew R.
    Gassner, Gregor J.
    Parsani, Matteo
    COMPUTERS & FLUIDS, 2020, 210 (210)
  • [8] Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements
    Crean, Jared
    Hicken, Jason E.
    Fernandez, David C. Del Rey
    Zingg, David W.
    Carpenter, Mark H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 356 : 410 - 438
  • [9] Entropy-stable discontinuous Galerkin difference methods for hyperbolic conservation laws
    Yan, Ge
    Kaur, Sharanjeet
    Banks, Jeffrey W.
    Hicken, Jason E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 422
  • [10] A parallel hp-adaptive discontinuous Galerkin method for hyperbolic conservation laws
    Bey, KS
    Oden, JT
    Patra, A
    APPLIED NUMERICAL MATHEMATICS, 1996, 20 (04) : 321 - 336