Conformally related Douglas metrics in dimension two are Randers

被引:0
|
作者
Vladimir S. Matveev
Samaneh Saberali
机构
[1] Friedrich-Schiller-Universität Jena,Institut für Mathematik
[2] Urmia University,undefined
来源
Archiv der Mathematik | 2021年 / 116卷
关键词
Finsler metric; Geodesics; Affine connection; 53B40; 58E10;
D O I
暂无
中图分类号
学科分类号
摘要
We show that two-dimensional conformally related Douglas metrics are Randers.
引用
收藏
页码:221 / 231
页数:10
相关论文
共 31 条
  • [11] On Douglas general (α, β)-metrics
    Xiao Ming Wang
    Ben Ling Li
    Acta Mathematica Sinica, English Series, 2017, 33 : 951 - 968
  • [12] On Douglas General(α,β)-metrics
    Xiao Ming WANG
    Ben Ling LI
    Acta Mathematica Sinica,English Series, 2017, (07) : 951 - 968
  • [13] ON A CLASS OF DOUGLAS METRICS
    Li, Benling
    Shen, Yibing
    Shen, Zhongmin
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2009, 46 (03) : 355 - 365
  • [14] On the interplay between Lorentzian Causality and Finsler metrics of Randers type
    Caponio, Erasmo
    Angel Javaloyes, Miguel
    Sanchez, Miguel
    REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (03) : 919 - 952
  • [15] On Douglas Warped Product Metrics
    Newton Mayer Solórzano Chávez
    Results in Mathematics, 2022, 77
  • [16] ON A CLASS OF DOUGLAS FINSLER METRICS
    Zhu, Hongmei
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (02) : 695 - 708
  • [17] On Douglas Warped Product Metrics
    Chavez, Newton Mayer Solorzano
    RESULTS IN MATHEMATICS, 2022, 77 (05)
  • [18] ON A CLASS OF DOUGLAS FINSLER METRICS
    朱红梅
    Acta Mathematica Scientia, 2018, (02) : 695 - 708
  • [19] On general (α, β)-metrics with vanishing Douglas curvature
    Zhu, Hongmei
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (09)
  • [20] Left Invariant Einstein-Randers Metrics on Compact Lie Groups
    Wang, Hui
    Deng, Shaoqiang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (04): : 870 - 881